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CHAPTER 1

An Introduction to Cambridge Handbook
of Expertise and Expert Performance:
Its Development, Organization,
and Content

K. Anders Ericsson

A significant milestone is reached when a
field of scientific research matures to a point
warranting publication of its first handbook.
A substantial body of empirical findings,
distinctive theoretical concepts and frame-
works, and a set of new or adapted meth-
ods justify a unifying volume. The growth of
this field is evident from the publication of a
series of edited books on diverse sets of skills
and expertise from many domains during the
last several decades (Anderson, 1981; Bloom,
1985a; Chase, 1973; Chi, Glaser, & Farr, 1988;
Ericsson, 1996a; Ericsson & Smith, 1991a;
Feltovich, Ford, & Hoffman, 1997; Hoffman,
1992; Starkes & Allard, 1993; Starkes &
Ericsson, 2003). And as in many other fields,
the name of a branch of scientific study, in
our case expertise and expert performance,
often communicates the domain of studied
phenomena.

Expert, Expertise, and Expert
Performance: Dictionary Definitions

Encyclopedias describe an Expert as “one
who is very skillful and well-informed in

some special field” (Webster's New World
Dictionary, 1968, p.168), or “someone widely
recognized as a reliable source of knowl-
edge, technique, or skill whose judgment is
accorded authority and status by the pub-
lic or his or her peers. Experts have pro-
longed or intense experience through prac-
tice and education in a particular field”
(Wikipedia, 2005). Expertise then refers to
the characteristics, skills, and knowledge that
distinguish experts from novices and less
experienced people. In some domains there
are objective criteria for finding experts,
who are consistently able to exhibit supe-
rior performance for representative tasks
in a domain. For example, chess masters
will almost always win chess games against
recreational chess players in chess tour-
naments, medical specialists are far more
likely to diagnose a disease correctly than
advanced medical students, and professional
musicians can perform pieces of music
in a manner that is unattainable for less
skilled musicians. These types of superior
reproducible performances of representative
tasks capture the essence of the respective
domains, and authors have been encouraged
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4 THE CAMBRIDGE HANDBOOK OF EXPERTISE AND EXPERT PERFORMANCE

to refer to them as Expert Performance in
this handbook.

In some domains it is difficult for non-
experts to identify experts, and consequently
researchers rely on peer-nominations by
professionals in the same domain. How-
ever, people recognized by their peers as
experts do not always display superior per-
formance on domain-related tasks. Some-
times they are no better than novices even
on tasks that are central to the expertise,
such as selecting stocks with superior future
value, treatment of psychotherapy patients,
and forecasts (Ericsson & Lehmann, 1996).
There are several domains where experts
disagree and make inconsistent recommen-
dations for action, such as recommend-
ing selling versus buying the same stock.
For example, expert auditors’ assessments
have been found to differ more from each
other than the assessments of less experi-
enced auditors (Bédard, 1991). Furthermore,
experts will sometimes acquire differences
from novices and other people as a func-
tion of their repetitive routines, which is a
consequence of their extended experience
rather than a cause for their superior perfor-
mance. For example, medical doctors’ hand-
writing is less legible than that of other
health professionals (Lyons, Payne, McCabe,
& Fielder, 1998). Finally, Shanteau (1988)
has suggested that “experts” may not need a
proven record of performance and can adopt
a particular image and project “outward
signs of extreme self-confidence” (p. 211) to
get clients to listen to them and continue
to offer advice after negative outcomes.
After all, the experts are nearly always the
best qualified to evaluate their own per-
formance and explain the reasons for any
deviant outcomes.

When the proposal for this Handbook
was originally prepared, the outline focused
more narrowly on the structure and acqui-
sition of highly superior (expert) perfor-
mance in many different domains (Ericsson,
1996b, 2004). In response to the requests
of the reviewers of that proposal, the final
outline of the handbook covered a broader
field that included research on the devel-
opment of expertise and how highly expe-

rienced individuals accumulate knowledge
in their respective domains and eventually
become socially recognized experts and mas-
ters. Consequently, to reflect the scope of
the Handbook it was entitled the Cambridge
Handbook of Expertise and Expert Perfor-
mance. The current handbook thus includes
a multitude of conceptions of expertise,
including perspectives from education, soci-
ology, and computer science, along with
the more numerous perspectives from psy-
chology emphasizing basic abilities, knowl-
edge, and acquired skills. In this introductory
chapter, I will briefly introduce some general
issues and describe the structure and con-
tent of the Handbook as it was approved by
Cambridge University Press.

Tracing the Development of Our
Knowledge of Expertise
and Expert Performance

Since the beginning of Western civiliza-
tion there has been a particular interest in
the superior knowledge that experts have
in their domain of expertise. The body of
knowledge associated with the domain of
expertise in which a person is expert is a
particularly important difference between
experts and other individuals. Much of this
knowledge can be verbally described and
shared with others to benefit decision mak-
ing in the domain and can help educate stu-
dents and facilitate their progress toward
expertise. The special status of the knowl-
edge of experts in their domain of exper-
tise is acknowledged even as far back as the
Greek civilization. Socrates said that

I observe that when a decision has to
be taken at the state assembly about
some matter of building, they send for the
builders to give their advice about the build-
ings, and when it concerns shipbuilding
they send for the shipwrights, and simi-
larly in every case where they are deal-
ing with a subject which they think can
be learned and taught. But if anyone else
tries to give advice, whom they don’t regard
as an expert, no matter how handsome or
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wealthy or well-born he is, they still will
have none of him, but jeer at him and create
an uproar, until either the would-be speaker
is shouted down and gives up of his own
accord, or else the police drag him away or
put him out on the order of the presidents.

(Plato, 1991, pp. 11-12)

Aristotle relied on his own senses as the
primary source of scientific knowledge and
sought out beekeepers, fishermen, hunters,
and herdsmen to get the best and most reli-
able information for his books on science
(Barnes, 2000). He even tried to explain
occasional incorrect reports from some of his
informants about how offspring of animals
were generated. For example, some of them
suggested that “the ravens and the ibises
unite at the mouth” (Aristotle, 2000, p. 315).
But Aristotle notes: “It is odd, however, that
our friends do not reason out how the semen
manages to pass through the stomach and
arrive in the uterus, in view of the fact that
the stomach concocts everything that gets
into it, as it does the nourishment” (pp. 315
& 317). Similarly, “those who assert that the
female fishes conceive as a result of swallow-
ing the male’s semen have failed to notice
certain points” (p. 311). Aristotle explains
that “Another point which helps to deceive
these people is this. Fish of this sort take only
a very short time over their copulation, with
the result that many fishermen even never
see it happening, for of course no fishermen
ever watches this sort of thing for the sake of
pure knowledge” (p. 313). Much of Aristo-
tle’s knowledge comes, at least partly, from
consensus reports of professionals.

Much later during the Middle Ages,
craftsmen formed guilds to protect them-
selves from competition. Through arrange-
ments with the mayor and/or monarch they
obtained a monopoly on providing partic-
ular types of handcraft and services with
set quality standards (Epstein, 1991). They
passed on their special knowledge of how
to produce products, such as lace, barrels,
and shoes, to their students (apprentices).
Apprentices would typically start at around
age 14 and commit to serve and study with
their master for around 7 years — the length
of time varied depending on the complex-

ity of the craft and the age and prior experi-
ence of the apprentice (Epstein, 1991). Once
an apprentice had served out their contract
they were given a letter of recommendation
and were free to work with other masters
for pay, which often involved traveling to
other cities and towns — they were there-
fore referred to as journeymen. When a jour-
neyman had accumulated enough additional
skill and saved enough money, he, or occa-
sionally she, would often return to his home
town to inherit or purchase a shop with tools
and apply to become a master of the guild.
In most guilds they required inspection of
the journeyman’s best work, that is, master
pieces, and in some guilds they administered
special tests to assess the level of perfor-
mance (Epstein, 1991). When people were
accepted as masters they were held responsi-
ble for the quality of the products from their
shop and were thereby allowed to take on
the training of apprentices (See Amirault &
Branson, Chapter 5, and Chi, Chapter 2, on
the progression toward expertise and mas-
tery of a domain).

In a similar manner, the scholars’ guild
was established in the 12th and 13th cen-
tury as “a universitas magistribus et pupil-
lorum,” or “guild of masters and students”
(Krause, 1996, p. 9). Influenced by the
University of Paris, most universities con-
ducted all instruction in Latin, where the
students were initially apprenticed as arts
students until they successfully completed
the preparatory (undergraduate) program
and were admitted to the more advanced
programs in medicine, law, or theology. To
become a master, the advanced students
needed to satisfy “a committee of examin-
ers, then publicly defending a thesis, often
in the town square and with local grocers
and shoemakers asking questions” (Krause,
1990, p. 10). The goal of the universities was
to accumulate and explain knowledge, and
in the process masters organized the exist-
ing knowledge (See Amirault & Branson,
Chapter 5). With the new organization of
the existing knowledge of a domain, it was
no longer necessary for individuals to dis-
cover the relevant knowledge and methods
by themselves.
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Today’s experts can rapidly acquire the
knowledge originally discovered and accu-
mulated by preceding expert practitioners
by enrolling in courses taught by skilled
and knowledgeable teachers using specially
prepared textbooks. For example, in the
13th century Roger Bacon argued that it
would be impossible to master mathematics
by the then-known methods of learning
(self-study) in less than 30 to 40 years
(Singer, 1958). Today the roughly equiva-
lent material (calculus) is taught in highly
organized and accessible form in every high
school.

Sir Francis Bacon is generally viewed as
one of the architects of the Enlightenment
period of Western Civilization and one of
the main proponents of the benefits of gen-
erating new scientific knowledge. In 1620
he described in his book Novum Organum
his proposal for collecting and organizing
all existing knowledge to help our civiliza-
tion engage in learning to develop a bet-
ter world. In it, he appended a listing of
all topics of knowledge to be included in
Catalogus Historarium Particularium. It
included a long list of skilled crafts, such
as “History of weaving, and of ancillary
skills associated with it,” “History of dyeing,”
“History of leather-working, tanning, and of
associated ancillary skills” (Rees & Wakely,
2004, P. 483).

The guilds guarded their knowledge and
their monopoly of production. It is there-
fore not surprising that the same forces that
eventually resulted in the French revolu-
tion were directed not only at the oppres-
sion by the king and the nobility, but also
against the monopoly of services provided
by the members of the guilds. Influenced by
Sir Francis Bacon’s call for an encyclopedic
compilation of human knowledge, Diderot
and D’Alembert worked on assembling all
available knowledge in the first Encyclopedie
(Diderot & D’Alembert, 1966-67), which
was originally published in 1751-80.

Diderot was committed to the creation of
comprehensive descriptions of the mechan-
ical arts to make their knowledge available
to the public and to encourage research and
development in all stages of production and

all types of skills, such as tannery, carpentry,
glassmaking, and ironworking (Pannabecker,
1994), along with descriptions of how to
sharpen a feather for writing with ink, as
shown in Figure 1.1. His goal was to describe
all the raw materials and tools that were nec-
essary along with the methods of produc-
tion. Diderot and his associate contributors
had considerable difficulties gaining access
to all the information because of the unwill-
ingness of the guild members to answer their
questions. Diderot even considered sending
some of his assistants to become apprentices
in the respective skills to gain access to all the
relevantinformation (Pannabecker, 1994). In
spite of all the information and pictures (dia-
grams of tools, workspaces, procedures, etc.,
as is illustrated in Figure 1.2 showing one
of several plates of the process of printing)
provided in the Encyclopedie, Diderot was
under no illusion that the provided informa-
tion would by itself allow anyone to become
a craftsman in any of the described arts and
wrote: “It is handicraft that makes the artist,
and it is not in Books that one can learn
to manipulate” (Pannabecker, 1994, p. 52).
In fact, Diderot did not even address the
higher levels of cognitive activity, “such as
intuitive knowledge, experimentation, per-
ceptual skills, problem-solving, or the anal-
ysis of conflicting or alternative technical
approaches” (Pannabecker, 1994, p. 52).

A couple of years after the French revo-
lution the monopoly of the guilds as elim-
inated (Fitzsimmons, 2003), including the
restrictions on the practice of medicine and
law. After the American Revolution and the
creation of the United States of America
laws were initially created to require that
doctors and lawyers be highly trained based
on the apprenticeship model, but pressure to
eliminate elitist tendencies led to the repeal
of those laws. From 1840 to the end of the
19th century there was no requirement for
certification to practice medicine and law
in the United States (Krause, 1996). How-
ever, with time both France and America
realized the need to restrict vital medical
and legal services to qualified profession-
als and developed procedures for training
and certification.
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Figure 1.1. An illustration for how to sharpen a goose feather for writing with ink from Plate IV
in the entry on “Ecriture” in the 23rd volume of Encyclopedie ou dictionnare de raisonne des
sciences, des artes et des métier (Diderot & D’ Alembert, 1066-67).
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Figure 1.2. An illustration of the workspace of a printer with some of his type elements from
Plate I in the entry on “Imprimerie” in the 28th volume of Encyclopedie ou dictionnare de
raisonne des sciences, des artes et des métier (Diderot & D’Alembert, 1966-67).
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Over the last couple of centuries there
have been several major changes in the rela-
tion between master and apprentice. For
example, before the middle of the 19th cen-
tury children of poor families would often
be taken on by teachers in exchange for
a contractual claim for part of the future
dancers’, singers’, or musicians’ earnings as
an adult (Rosselli, 1991). Since then the
state has gotten more involved in the train-
ing of their expert performers, even out-
side the traditional areas of academia and
professional training in medicine, law, busi-
ness, and engineering. In the late 19th cen-
tury, public institutions such as the Royal
Academy of Music were established to pro-
mote the development of very high levels of
skill in music to allow native students com-
pete with better trained immigrants (Rohr,
2001). In a similar manner during the lat-
ter part of the 20th century, many countries
invested in schools and academies for the
development of highly skilled athletes for
improved success in competitions during the
Olympic Games and World Championships
(Bloomfield, 2004).

More generally, over the last century there
have been economic developments with
public broadcasts of competitions and per-
formances that generate sufficient revenue
for anumber of domains of expertise, such as
sports and chess, to support professional full-
time performers as well as coaches, train-
ers, and teachers. In these new domains,
along with the traditional professions, cur-
rent and past expert performers continue
to be the primary teachers at the advanced
level (masters), and their professional asso-
ciations have the responsibility of certifying
acceptable performance and the permission
to practice. Accordingly, they hold the clout
in thus influencing training in professional
schools, such as law, medical, nursing, and
business schools — “testing is the tail that
wags the dog” (Feltovich, personal commu-
nication) — as well as continuing education
training (see Evetts, Meig, & Felt, Chapter 7
on sociological perspectives on expertise).
The accumulation of knowledge about the
structure and acquisition of expertise in a
given domain, as well as knowledge about

the instruction and training of future pro-
fessionals, has occurred, until quite recently,
almost exclusively within each domain with
little cross-fertilization of domains in terms
of teaching, learning methods, and skill-
training techniques.

It is not immediately apparent what is
generalizable across such diverse domains of
expertise, such as music, sport, medicine,
and chess. What could possibly be shared
by the skills of playing difficult pieces
by Chopin, running a mile in less than
four minutes, and playing chess at a high
level? The premise for a field studying
expertise and expert performance is that
there are sufficient similarities in the the-
oretical principles mediating the phenom-
ena and the methods for studying them in
different domains that it would be possi-
ble to propose a general theory of exper-
tise and expert performance. All of these
domains of expertise have been created by
humans. Thus the accumulated knowledge
and skills are likely to reflect similarities
in structure that reflect both human bio-
logical and psychological factors, as well
as cultural factors. This raises many chal-
lenging problems for methodologies used
to describe the organization of knowledge
and mechanisms and reveals the medi-
ating expert performance that generalizes
across domains.

Once we know how experts organize
their knowledge and their performance, is it
possible to improve the efficiency of learn-
ing to reach higher levels of expert perfor-
mance in these domains? It should also be
possible to answer why different individ-
uals improve their performance at differ-
ent rates and why different people reach
very different levels of final achievement.
Would a deeper understanding of the devel-
opment and its mediating mechanisms make
it possible to select individuals with unusual
potential and to design better developmen-
tal environments to increase the proportion
of performers who reach the highest levels?
Would it be possible even to facilitate the
development of those rare individuals who
make major creative contributions to their
respective domains?
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Conceptions of Generalizable Aspects
of Expertise

Several different theoretical frameworks
have focused on broad issues on attaining
expert performance that generalize across
different domains of expertise.

Individual Differences in Mental
Capacities

A widely accepted theoretical concept
argues that general innate mental capaci-
ties mediate the attainment of exceptional
performance in most domains of expertise.
In his famous book, “Heriditary Genius,”
Galton (1869/1979) proposed that across a
wide range of domains of intellectual activ-
ity the same innate factors were required to
attain outstanding achievement and the des-
ignation of being a genius. He analyzed emi-
nent individuals in many domains in Great
Britain and found that these eminent indi-
viduals were very often the offspring of
a small number of families — with much
higher frequency than could be expected by
chance. The descendents from these fami-
lies were much more likely to make emi-
nent contributions in very diverse domains
of activity, such as becoming famous politi-
cians, scientists, judges, musicians, painters,
and authors. This observation led Galton to
suggest that there must be a heritable poten-
tial that allows some people to reach an
exceptional level in any one of many differ-
ent domains. After reviewing the evidence
that height and body size were heritable
Galton (1869/1979) argued: “Now, if this be
the case with stature, then it will be true as
regards every other physical feature — as cir-
cumference of head, size of brain, weight of
grey matter, number of brain fibres, &c.; and
thence, a step on which no physiologist will
hesitate, as regards mental capacity” (pp. 31—
32, emphasis added).

Galton clearly acknowledged the need
for training to reach high levels of perfor-
mance in any domain. However, he argued
that improvements are rapid only in the
beginning of training and that subsequent
increases become increasingly smaller, until

“maximal performance becomes a rigidly
determinate quantity” (p. 15). Galton devel-
oped a number of different mental tests
of individual differences in mental capacity.
Although he never related these measures
to the objective performance of experts on
particular real-world tasks, his views led to
the common practice of using psychome-
tric tests for admitting students into pro-
fessional schools and academies for arts
and sports with severely limited availabil-
ity of slots. These tests of basic ability and
talent were believed to identify the stu-
dents with the capacity for reaching the
highest levels.

In the 20th century scientists began the
psychometric testing of large groups of
experts to measure their powers of mental
speed, memory, and intelligence. When the
experts’ performance was compared to con-
trol groups of comparable education, there
was no evidence for Galton’s hypothesis of
a general superiority for experts because
the demonstrated superiority of experts was
found to be limited to specific aspects
related to the particular domain of exper-
tise. For example, the superiority of the
chess experts’ memory was constrained to
regular chess positions and did not gener-
alize to other types of materials (Djakow,
Petrowski, & Rudik, 1927). Not even 1Q
could distinguish the best among chess play-
ers (Doll & Mayr, 1987) or the most success-
ful and creative among artists and scientists
(Taylor, 1975).

In a recent review, Ericsson and Lehmann
(1996) found that (1) measures of basic
mental capacities are not valid predictors
of attainment of expert performance in a
domain, (2) the superior performance of
experts is often very domain specific, and
transfer outside their narrow area of exper-
tise is surprisingly limited, and (3) system-
atic differences between experts and less
proficient individuals nearly always reflect
attributes acquired by the experts during
their lengthy training. The reader is directed
to the chapter by Horn and Masunaga (chap-
ter 34) and to comprehensive reviews in
Sternberg and Grigorenko, 2003, and Howe,
Davidson, and Sloboda. 1998.
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Expertise as the Extrapolation of
Everyday Skill to Extended Experience

A second general type of theoretical frame-
works is based on the assumption that the
same learning mechanisms that account for
the acquisition of everyday skills can be
extended to the acquisition of higher lev-
els of skills and expertise. Studies in the
19th century proposed that the acquisition
of high levels of skills was a natural con-
sequence of extended experience in the
domains of expertise. For example, Bryan
and Harter (189g) argued that ten years of
experience were required to become a pro-
fessional telegrapher. The most influential
and pioneering work on expertise was con-
ducted in the 1940s by Adrian de Groot
(1978), who invited international chess mas-
ters and skilled club players to “think aloud”
while they selected the best move for chess
positions. His analyses of the protocols
showed that the elite players were able to
recognize and generate chess moves that
were superior to skilled club players by rely-
ing on acquired patterns and planning (see
Gobet & Charness, chapter 30, and Erics-
son, chapter 13, for amore detailed account).
DeGroot'’s dissertation was later translated
into English in the late 1960s and early 1970s
(deGroot, 1978) and had substantial impact
on the seminal theory of expertise proposed
by Herb Simon and Bill Chase (Simon &
Chase, 1973).

In the 1950s and 1960s Newell and Simon
proposed how information-processing mod-
els of human problem solving could be im-
plemented as computer programs, such as
the General Problem Solver (Ernst &
Newell, 1969). In their seminal book, Hu-
man Problem Solving, Newell and Simon
(1972) argued that domain-general problem
solving was limited and that the thinking
involved in solving most tasks could be rep-
resented as the execution of a sequence of
production rules — such as IF <pattern>,
THEN <action> — that incorporated specific
knowledge about the task environment. In
their theory of expertise, Simon and Chase
(1973) made the fundamental assumption
that the same patterns (chunks) that allo-

wed the experts to retrieve suitable actions
from memory were the same patterns that
mediated experts’ superior memory for the
current situation in a game. Instead of study-
ing the representative task of playing chess,
namely, selecting the best moves for chess
positions (Ericsson & Smith, 1991b; Vicente
& Wang, 1998), Chase and Simon (1973)
redirected the focus of research toward
studying performance of memory tasks as a
more direct method of studying the charac-
teristics of patterns that mediate improve-
ment in skill. They found that there was a
clear relation between the number of chess
pieces recalled from briefly presented chess
positions and the player’s level of chess
expertise. Grand masters were able to repro-
duce almost the entire chessboards (24 to 26
pieces) by recalling a small number of com-
plex chunks, whereas novices could recall
only around 4 pieces, where each piece was
a chunk. The masters’ superior memory was
assumed to depend on an acquired body of
many different patterns in memory because
their memory for randomly rearranged chess
configurations was markedly reduced. In fact
in such configurations they could recall only
around 5 to 7 pieces, which was only slightly
better than the recall of novices.

Experts’ superiority for representative
but not randomly rearranged stimuli has
since been demonstrated in a large number
of domains. The relation between the mech-
anisms mediating memory performance and
the mechanisms mediating representative
performance in the same domains have been
found to be much more complex than orig-
inally proposed by Simon and Chase (1973)
(see Gobet & Charness, Chapter 30, and
Wilding & Valentine, Chapter 31. See also
Ericsson & Kintsch, 1995; Ericsson, Patel, &
Kintsch, 2000; Gobet & Simon, 1996; Simon
& Gobet, 2000; Vicente & Wang, 1998).

Expertise as Qualitatively Different
Representation and Organization

of Knowledge

A different family of approaches drawing
on the Simon-Chase theory of expertise has
focused on the content and organization of
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the experts’ knowledge (Chi, Feltovich, &
Glaser, 1981; Chi, Glaser, & Rees, 1982) and
on methods to extract the experts knowl-
edge to build computer-based models emu-
lating the experts’ performance (Hoffman,
1992). These approaches have studied
experts, namely, individuals who are socially
recognized as experts and/or distinguished
by their extensive experience (typically over
10 years) and by knowledge of a particular
subject attained through instruction, study,
or practical experience. The work of Robert
Glaser, Micheline Chi, and Paul Feltovich
examined the representations of knowledge
and problem solutions in academic domains,
such as physics (See Chi, Chapters 3 and 10).
Of particular importance, Chi studied chil-
dren with extensive knowledge of chess and
dinosaurs (See Chi, Chapter 10), and found
these children displayed many of the same
characteristics of the knowledge representa-
tion of adult experts. This work on exper-
tise is summarized in Feltovich, Prietula, and
Ericsson, Chapter 4, Chi, Chapter 10, and
Hoffman and Lintern, Chapter 12, and in
a couple of edited volumes (Chi, Glaser, &
Farr, 1988; Starkes & Allard, 1993).

In a parallel development in the com-
puter science of the late 1970s and early
1980s, Ed Feigenbaum and other researchers
in the area of artificial intelligence and cog-
nitive science have attempted to elicit the
knowledge of experts (Hoffman, 1992) and
to incorporate their knowledge in computer
models (c.f expert systems) that seek to
replicate some of the decision making and
behavior of experts (see Buchanan, Davis, &
Feigenbaum, Chapter 6, and Hoffman &
Lintern, Chapter 12). There has been a long-
standing controversy over whether highly
experienced experts are capable of articu-
lating the knowledge and methods that con-
trol their generation of appropriate actions in
complex situations.

The tradition of skill acquisition of Bryan
and Harter (1899), Fitts and Posner (1967),
and Simon and Chase (1973) assumed that
expert performance was associated with
automation and was virtually effortless per-
formance based on pattern recognition and
direct access of actions. However, Polanyi

(1962, 1960) is generally recognized as the
first critic who saw that nonconscious and
intuitive mediation limits the possibility of
eliciting and mapping the knowledge and
rules that mediates experts’ intuitive actions.
Subsequent discussion of the development
of expertise by Dreyfus and Dreyfus (19586)
and Benner (1984) has argued that the high-
est levels of expertise are characterized by
contextually based intuitive actions that are
difficult or impossible to report verbally.
Several chapters in this handbook propose
methods for uncovering tacit knowledge
about the successful development of exper-
tise (Cianciolo, Matthew, Wagner, & Stern-
berg, Chapter 35), about methods of work
through observation (Clancey, Chapter §),
Concept Mapping (Hoffman & Lintern,
Chapter 12), similarity judgment (Chi,
Chapter 10), and traditional psychometric
analyses of individual differences in perfor-
mance (Ackerman & Beier, Chapter ¢) or
simulated environments (Ward, Williams, &
Hancock, Chapter 14). Other investigators
argue that expert performers often continue
to engage in deliberate practice in order to
improve and that these performers have
to actively retain and refine their mental
representations for monitoring and control-
ling their performance. This retained abil-
ity to monitor performance allows them to
give informative concurrent and retrospec-
tive reports about the mediating sequences
of thoughts (see Ericsson, Chapter 13).

Expertise as Elite Achievement Resulting
from Superior Learning Environments

There are other approaches to the study
of expertise that have focused on objec-
tive achievement. There is a long tradi-
tion of influential studies with interviews
of peer-nominated eminent scientists (Roe,
1952) and analyses of biographical data on
Nobel Prize winners (Zuckerman, 1977
(see Simonton, Chapter 18, 1994, for a
more extensive account). In a seminal study,
Benjamin Bloom and his colleagues (Bloom,
1985a) interviewed international-level per-
formers from six different domains of exper-
tise ranging from swimming to molecular
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genetics. All of the 120 participants had won
prizes at international competitions in their
respective domains. They were all inter-
viewed about their development, as were
their parents, teachers, and coaches. For
example, Bloom and his colleagues collected
information on the development of athletes
who had won international competitions in
swimming and tennis. They also interviewed
artists who have won international competi-
tions in sculpting and piano playing and sci-
entists who had won international awards in
mathematics and molecular biology. In each
of these six domains Bloom (1985b) found
evidence for uniformly favorable learning
environments for the participants. Bloom
(1985b) concluded that the availability of
early instruction and support by their fam-
ily appeared to be necessary for attaining
an international level of performance as an
adult. He found that the elite performers
typically started early to engage in rele-
vant training activities in the domain and
were supported both by exceptional teach-
ers and committed parents. One of the con-
tributors to the Handbook, Lauren Sosniak
(19853, 1985b, 1985¢, 1985d), describes in
Chapter 16 the main findings from the orig-
inal study (Bloom, 1985a), along with more
recent interview studies aimed to uncover
the development of elite performers.

Expertise as Reliably Superior (Expert)
Performance on Representative Tasks

It is difficult to identify the many mediat-
ing factors that might have been responsi-
ble for the elite performer to win an award
and to write a groundbreaking book. When
eminence and expertise is based on a sin-
gular or small number of unique creative
products, such as books, paintings, or musi-
cal as compositions, it is rarely possible to
identify and study scientifically the key fac-
tors that allowed these people to produce
these achievements. Consequently, Ericsson
and Smith (1991b) proposed that the study
of expertise with laboratory rigor requires
representative tasks that capture the essence
of expert performance in a specific domain
of expertise. For example, a world-class

sprinter will be able to reproduce superior
running performance on many tracks and
even indoors in a large laboratory. Similarly,
de Groot (1978) found that the ability to
select the best move for presented chess
positions is the best correlate of chess rat-
ings and performance at chess tournaments —
a finding that has been frequently replicated
(Ericsson & Lehmann, 1996; van der Maas
& Wagenmakers, 2005). Once it is possi-
ble to reproduce the reliably superior perfor-
mance of experts in a controlled setting, such
as a laboratory, it then becomes feasible to
examine the specific mediating mechanisms
with experiments and process-tracing tech-
niques, such as think aloud verbal reports
(see Ericsson, Chapter 13, and Ericsson &
Smith, 1991b). The discovery of represen-
tative tasks that measure adult expert per-
formance under standardized conditions in
a controlled setting, such as a laboratory,
makes it possible to measure and compare
the performance of less-skilled individuals
on the same tasks. Even more important,
it allows scientists to test aspiring perform-
ers many times during their development
of expertise, allowing the measurement of
gradual increases in performance.

The new focus on the measurement
of expert performance with standardized
tasks revealed that “experts,” that is, indi-
viduals identified by their reputation or
their extensive experience, are not always
able to exhibit reliably superior perfor-
mance. There are at least some domains
where “experts” perform no better than
less-trained individuals and that sometimes
experts’ decisions are no more accurate
than beginners’ decisions and simple deci-
sion aids (Camerer & Johnson, 1991; Bolger
& Wright, 1992). Most individuals who
start as active professionals or as begin-
ners in a domain change their behavior and
increase their performance for a limited time
until they reach an acceptable level. Beyond
this point, however, further improvements
appear to be unpredictable and the num-
ber of years of work and leisure experience
in a domain is a poor predictor of attained
performance (Ericsson & Lehmann, 1996).
Hence, continued improvements (changes)
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in achievement are not automatic conse-
quences of more experience, and in those
domains where performance consistently
increases, aspiring experts seek out partic-
ular kinds of experience, that is, deliber-
ate practice (Ericsson, Krampe, & Tesch-
Rémer, 1993). Such activities are designed,
typically by a teacher, for the sole purpose
of effectively improving specific aspects of
an individual’s performance. A large body
of research shows how deliberate prac-
tice can change mediating mechanisms and
that the accumulated amounts of deliber-
ate practice are related to the attained level
of performance (see Ericsson, Chapter 38,
and Deakin, Coté, & Harvey, Chapter 17,
Zimmerman, Chapter 38, as well as the
edited books by Ericsson [1990a] and Starkes
& Ericsson [2003]).

General Comments

In summary, there are a broad range of
approaches to the study of the structure and
acquisition of expertise as well as expert per-
formance. Although individual researchers
and editors may be committed to one
approach over the others, this Handbook
has been designed to fairly cover a wide
range of approaches and research topics in
order to allow authors to express their dif-
ferent views. However, the authors have
been encouraged to describe explicitly their
empirical criteria for their key terms, such
as “experts” and “expert performance.” For
example, the authors have been asked to
report if the cited research findings involve
experts identified by social criteria, criteria
of lengthy domain-related experience, or cri-
teria based on reproducibly superior perfor-
mance on a particular set of tasks representa-
tive of the individuals’ domain of expertise.

General Outline of the Handbook

The handbook is organized into six gen-
eral sections. First, Section 1 introduces the
Handbook with brief accounts of general per-
spectives on expertise. In addition to this
introductory chapter that outlines the orga-
nization of the handbook, there are chap-

ters by two of the pioneers of the study of
cognitive skill and expertise. Michelene Chi
(Chapter 2) describes two approaches to the
study of expertise and Earl Hunt (Chapter 3)
gives his general perspective on the princi-
pal factors related to expertise. In a recent
book Hunt (1995) has made a convincing
case for the increasing importance of high
levels of skill in occupations of the future. He
argues that with the development of tech-
nology to automate less complex jobs the
most important occupations of the future
will require creative design and planning that
cannot be easily automated. He foresees a
rapidly increasing need to train students to
even higher levels of expertise to continue
the development of our modern society. The
key competitive differences between com-
panies of the future may not have to do
with raw materials and monetary resources
but with human capital, namely, the abili-
ties of the employees. The Nobel Prize win-
ner Gary Becker has for a long time made
the case for the critical role of education
and human capital in our current industri-
alized world, and especially the crucial role
of highly accomplished people. He (Becker,
2002) illustrated this claim by a quote
from Microsoft founder Bill Gates: Take our
20 best people away and . . . Microsoft would
become an unimportant company” (Becker,
2002, p. 8).

The second section of the Handbook
contains reviews of the historical devel-
opment of the study of expertise in four
major disciplines, namely, psychology, edu-
cation, computer science, and sociology.
Three pioneers in the psychological study of
expertise, Paul Feltovich, Michael Prietula,
and Anders Ericsson, describe the develop-
ment of the study of expertise in psychol-
ogy (Chapter 4). One of the pioneers in the
development of instructional design, Robert
Branson, has together with Ray Amirault
(Chapter 5) described the role of exper-
tise in the historical development of educa-
tional methods and theories. Three of the
pioneers in the development of expert sys-
tems, Bruce Buchanan, Randall Davis, and
Edward Feigenbaum (Chapter 6), describe
the role of expertise in shaping contempo-
rary approaches in computer science and
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artificial intelligence. Finally, Julia Evetts,
Harald Mieg, and Ulrike Felt (Chap-
ter 7) provide a description of the relevant
approaches to the study of expertise from
the point of view of sociology.

The next two sections of the Handbook
review the core methods for studying the
structure (Section 3) and acquisition (Sec-
tion 4) of expertise and expert performance.
Each of the chapters in Sections 3 and 4
has been written by one of the pioneer-
ing researchers who have developed these
methods and approaches for use in research
on expertise and expert performance. The
chapters consist of a historical background,
a detailed description of the recommended
methodology with a couple of examples,
and a general review of the type of empir-
ical evidence that has been collected. In the
first chapter of Section 3 William Clancey
(Chapter 8) gives an overview of the ethno-
graphic observational methods for study-
ing the behavior of experts. Philip Ack-
erman and Margaret Beier (Chapter 9)
review the use of psychometric methods for
studying expertise. Michelene Chi (Chap-
ter 10) describes how laboratory meth-
ods have been used to assess the struc-
ture of knowledge. Jan Maarten Schraagen
(Chapter 11) describes how tasks presented
to skilled and less-skilled individuals can
be analyzed and how a task analysis can
guide data analysis and theory construction.
Robert Hoffman and Gavin Lintern (Chap-
ter 12) review methods for how knowledge
of experts can be elicited and represented by
interviews, Concept Maps, and abstraction-
decomposition diagrams. Anders Ericsson
(Chapter 13) describes how the elicitation
of “think-aloud” protocols can allow inves-
tigators to trace the thought processes of
experts while they perform representative
tasks from their domain. Finally, Paul Ward,
Mark Williams, and Peter Hancock (Chap-
ter 14) review how simulated environments
can both be used to measure experts’ rep-
resentative performance as well as be used
for training.

Section 4 contains chapters examining
methods for studying how skill, exper-
tise, and expert performance develop and
are acquired through practice. In the first

chapter, Robert Proctor and Kim-Phuon
Vu (Chapter 15) describe how laboratory
methods for the study of skilled perfor-
mance can inform research on expertise and
expert performance. Lauren Sosniak (Chap-
ter 10) discusses how she and her colleagues
used retrospective interviews to describe
the development of expertise in the clas-
sic studies led by Benjamin Bloom (1985a),
along with some recent extensions of that
work. Janice Deakin, Jean Coté, and Andrew
Harvey (Chapter 17) use diaries and describe
different methods to study how expert per-
formers spend their time and how experts
allocate their practice time. In the final
chapter of this section, Dean Simonton
(Chapter 18) reviews the methods of histo-
riometrics and how data about the develop-
ment of eminent performers can be collected
and analyzed.

Section 5 consists of fifteen chapters that
review our current knowledge about exper-
tise and expert performance in particular
domains and represents the core of this
Handbook. Each chapter has been written
by internationally respected experts on the
associated areas of expertise and contains
a brief historic background followed by a
review and future directions. The chap-
ters in Section 5 have been broken down
into three subsections. The first subsec-
tion is focused on different types of profes-
sional expertise, namely, medicine (Chap-
ter 19 by Geoff Norman, Kevin Eva, Lee
Brooks, and Stan Hamstra), transportation,
such as driving, flying, and airplane control
(Chapter 20 by Francis Durso and Andrew
Dattel), software design (Chapter 21 by
Sabine Sonnentag, Cornelia Niessen, and
Judith Volmer), and writing (Chapter 22 by
Ronald Kellogg). There are two chapters on
various aspects of decision making, namely,
judgments in dynamic situations (natu-
ral decision making, Chapter 23 by Karol
Ross, Jennifer Shafer, and Gary Klein) and
decision-making expertise (Chapter 24 by
Frank Yates & Michael Tschirhart), followed
by Chapter 25 by Eduardo Salas, Michael
Rosen, Shawn Burke, Gerald Goodwin, and
Stephen Fiore on research on expert teams.
The second subsection contains chapters
that review expert performance in music
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(Chapter 26 by Andreas Lehmann and
Hans Gruber) and in sports (Chapter 27
by Nicola Hodges, Janet Starkes, and Clare
MacMahon), and expertise in other types
of arts, such as acting, ballet, and dance
(Chapter 28 by Helga Noice and Tony
Noice). The final chapter in this subsec-
tion reviews research on perceptual—motor
skills (Chapter 29 by David Rosenbaum,
Jason Augustyn, Rajal Cohen, and Steven
Jax). The third and final subsection covers
the findings in a diverse set of domains of
expertise, including games. The first chap-
ter (Chapter 30 by Fernand Gobet and
Neil Charness) describes the pioneering and
influential work on expertise in the game of
chess. The next chapter (Chapter 31 by John
Wilding and Elizabeth Valentine) reviews
research on exceptional memory, in particu-
lar for information that most people have
difficulty remembering, such as numbers,
names, and faces. The last two chapters
review research on mathematical ability and
expertise (Chapter 32 by Brian Butterworth)
and expertise in history (Chapter 33 by Jim
Voss and Jennifer Wiley) — an example of a
knowledge-based domain.

In the last section of the Handbook we
have invited some of the world’s lead-
ing researchers on general theoretical issues
that are cutting across different domains
of expertise to review the current state of
knowledge. In the first chapter John Horn
and Hiromi Masunaga (Chapter 34) dis-
cuss the relation between general intelli-
gence and expertise. In the following chapter
Anna Cianciolo, Cynthia Mattew, Richard
Wagner, and Robert Sternberg (Chapter 35)
review the relation between expertise and
central concepts, such as practical intelli-
gence and tacit knowledge. Mica Endsley
(Chapter 36) reviews evidence for situa-
tional awareness, namely, experts’ superior
ability to perceive and monitor critical
aspects of situations during performance.
The next three chapters focus on aspects of
learning. Nicole Hill and Walter Schneider
(Chapter 37) review the neurological evi-
dence on physiological adaptations result-
ing from the acquisition of expertise. Anders
Ericsson (Chapter 38) reviews the evidence

for the key role of deliberate practice in caus-
ing physiological adaptations and the acqui-
sition of mechanisms that mediate expert
performance. Finally, Barry Zimmerman
(Chapter 39) describes the importance of
self-regulated learning in the development
of expertise. The last three chapters review
general issues in expertise. Ralf Krampe
and Neil Charness (Chapter 40) review
the effects of aging on expert performance
and how it might be counteracted. Harald
Mieg (Chapter 41) reviews the importance
of social factors in the development of
expertise. Finally, Robert Weisberg (Chapter
42) discusses the relation between expertise
and creativity.

Conclusion

This Handbook has been designed to provide
researchers, students, teachers, coaches, and
anyone interested in attaining expertise with
a comprehensive reference to methods, find-
ings, and theories related to expertise and
expert performance. It can be an essential
tool for researchers, professionals, and stu-
dents involved in the study or the training of
expert performance and a necessary source
for college and university libraries, as well
as public libraries. In addition, the Hand-
book is designed to provide a suitable text
for graduate courses on expertise and expert
performance. More generally, it is likely that
professionals, graduate students, and even
undergraduates who aspire to higher levels
of performance in a given domain can learn
from experts’ pathways to superior perfor-
mance in similar domains.

Many researchers studying expertise and
expert performance are excited and person-
ally curious about the established research
findings that most types of expertise require
atleast a decade of extended efforts to attain
the mechanisms mediating superior perfor-
mance. There is considerable knowledge
that is accumulating about generalizations
across many domains about the acquisition
and refinement of these mechanisms during
an extended period of deliberate practice.
The generalizable insights range from the
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characteristics of ideal training environ-
ments, to the methods for fostering moti-
vation by providing both emotional support
and attainable training tasks of a suitable dif-
ficulty level. This theoretical framework has
several implications.

It implies that if someone is interested
in the upper limits of human performance
and the most effective training to achieve
the highest attainable levels, they should
study the training techniques and perfor-
mance limits of experts who have spent
their entire life maximizing their perfor-
mance. This assumption also implies that the
study of expert performance will provide
us with the best current evidence on what
is humanly possible to achieve with today’s
methods of training and how these elite per-
formers are able to achieve their highest lev-
els of performance. Given that performance
levels are increasing every decade in most
domains of expertise, scientists will need to
work with elite performers and their coaches
to discover jointly the ever-increasing levels
of improved performance.

The framework has implications for edu-
cation and professional training of perfor-
mance for all the preliminary levels that
lead up to the expert levels in professional
domains of expertise. By examining how
the prospective expert performers attained
lower levels of achievement, we should
be able to develop practice environments
and foster learning methods that help peo-
ple to attain the fundamental representa-
tions of the tasks and the self-regulatory
skills that were necessary for the prospec-
tive experts to advance their learning to
higher levels.

With the rapid changes in the relevant
knowledge and techniques required for most
jobs, nearly everyone will have to con-
tinue their learning and even intermittently
relearn aspects of their professional skills.
The life-long quest for improved adapta-
tion to task demands will not be limited to
experts anymore. We will all need to adopt
the characteristics and the methods of the
expert performers who continuously strive
to attain and maintain their best level of
achievement.
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CHAPTER =2

Two Approaches to the Study
of Experts’ Characteristics

Michelene T. H. Chi

This chapter differentiates two approaches
to the study of expertise, which I call
the “absolute approach” and the “relative
approach,” and what each approach implies
for how expertise is assessed. It then summa-
rizes the characteristic ways in which experts
excel and the ways that they sometimes
seem to fall short of common expectations.

Two Approaches to the Study
of Expertise

The nature of expertise has been studied in
two general ways. One way is to study truly
exceptional people with the goal of under
standing how they perform in their domain
of expertise. I use the term domain loosely
to refer to both informal domains, such as
sewing and cooking, and formal domains,
such as biology and chess. One could choose
exceptional people on the basis of their
well-established discoveries. For example,
one could study how Maxwell constructed
a quantitative field concept (Nersessian,
1992). Or one could choose contemporary
scientists whose breakthroughs may still be

debated, such as pathologist Warren and gas-
troenterologist Marshall’s proposal that bac-
teria cause peptic ulcers (Chi & Hausmann,
2003; Thagard, 1998§; also see the chapters
by Wilding & Valentine, Chapter 31, Simon-
ton, Chapter 18, and Weisberg, Chapter 42).

Several methods can be used to identify
someone who is truly an exceptional expert.
One method is retrospective. That is, by
looking at how well an outcome or prod-
uct is received, one can determine who is or
is not an expert. For example, to identify a
great composer, one can examine a quanti-
tative index, such as how often his or her
music was broadcast (Kozbelt, 2004). A sec-
ond method may be some kind of concur-
rent measure, such as a rating system as a
result of tournaments, as in chess (Elo, 1965),
or as a result of examinations (Masunaga &
Horn, 2000), or just measures of how well
the exceptional expert performs his task. A
third method might be the use of some inde-
pendent index, if it is available. In chess,
for example, there exists a task called the
Knight's Tour that requires a player to move
a Knight Piece across the rows of a chess
board, using legal Knight Moves. The time it
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Table 2.1. A proficiency scale (adapted from Hoffman, 1998).

Naive

One who is totally ignorant of a domain

Novice

Literally, someone who is new — a probationary member. There has been some

minimal exposure to the domain.

Initiate
introductory instruction.
Apprentice

Literally, a novice who has been through an initiation ceremony and has begun

Literally, one who is learning — a student undergoing a program of instruction

beyond the introductory level. Traditionally, the apprentice is immersed in the
domain by living with and assisting someone at a higher level. The length of an
apprenticeship depends on the domain, ranging from about one to 12 years in

the Craft Guilds.

Journeyman

Literally, a person who can perform a day’s labor unsupervised, although working

under orders. An experienced and reliable worker, or one who has achieved a
level of competence. Despite high levels of motivation, it is possible to remain

at this proficiency level for life.
The distinguished or brilliant journeyman, highly regarded by peers, whose

Expert

judgments are uncommonly accurate and reliable, whose performance shows
consummate skill and economy of effort, and who can deal effectively with
certain types of rare or “tough” cases. Also, an expert is one who has special
skills or knowledge derived from extensive experience with subdomains.

Master

Traditionally, a master is any journeyman or expert who is also qualified to teach

those at a lower level. Traditionally, a master is one of an elite group of experts
whose judgments set the regulations, standards, or ideals. Also, a master can be
that expert who is regarded by the other experts as being “the” expert, or the
“real” expert, especially with regard to sub-domain knowledge.

takes to complete the moves is an indication
of one’s chess skill (Chi, 1978). Although this
task is probably not sensitive enough to dis-
criminate among the exceptional experts, a
task such as this can be adapted as an index of
expertise. In short, to identify a truly excep-
tional expert, one often resorts to some kind
of measure of performance. The assessment
of exceptional experts needs to be accurate
since the goal is to understand their supe-
rior performance. Thus, this approach stud-
ies the remarkable few to understand how
they are distinguished from the masses.
Though expertise can be studied in the
context of “exceptional” individuals, there
is a tacit assumption in the literature that
perhaps these individuals somehow have
greater minds in the sense that the “global
qualities of their thinking” might be dif-
ferent (Minsky & Papert, 1974, p. 59). For
example, they might utilize more power-
ful domain-general heuristics that novices
are not aware of or they may be natu-
rally endowed with greater memory capacity
(Pascual-Leone, 1970; Simonton, 1977). This
line of reasoning is extended to cognitive

functioning probably because genetic inheri-
tance does seem to be a relevant component
for expertise in music and sports. In short,
the tacit assumption is that greatness or cre-
ativity arises from chance and unique innate
talent (Simonton, 1977). Let’s call this type
of work in psychology the study of excep-
tional or absolute expertise.

A second research approach to expertise
is to study experts in comparison to novices.
This relative approach assumes that exper-
tise is a level of proficiency that novices can
achieve. Because of this assumption, the
definition of expertise for this contras-
tive approach can be more relative, in the
sense that the more knowledgeable group
can be considered the “experts” and the less
knowledgeable group the “novices.” Thus
the term “novices” is used here in a generic
sense, in that it can refer to a range of non-
experts, from the naives to the journeymen
(see Table 2.1 for definitions).

Proficiency level can be grossly assessed
by measures such as academic qualifications
(such as graduate students vs. undergrad-
uates), seniority or years performing the
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task, or consensus among peers. It can also
be assessed at a more fine-grained level, in
terms of domain-specific knowledge or per-
formance tests.

One advantage of this second approach,
the study of “relative expertise,” is that we
can be a little less precise about how to
define expertise since experts are defined
as relative to novices on a continuum. In
this relative approach, a goal is to under-
stand how we can enable a less skilled or
experienced persons to become more skilled
since the assumption is that expertise can be
attained by a majority of students. This goal
has the advantage of illuminating our under-
standing of learning since presumably the
more skilled person became expert-like from
having acquired knowledge about a domain,
that is, from learning and studying (Chi &
Bassok, 1989) and from deliberate practice
(Ericsson, Chapter 38; Ericsson, Krampe, &
Tesch-Romer, 1993; Weisberg, 1999). Thus,
the goal of studying relative expertise is not
merely to describe and identify the ways in
which experts excel. Rather, the goal is to
understand how experts became that way so
that others can learn to become more skilled
and knowledgeable.

Because our definition characterizes
experts as being more knowledgeable than
non-experts, such a definition entails sev-
eral fundamental theoretical assumptions.
First, it assumes that experts are people
who have acquired more knowledge in a
domain (Ericsson & Smith, 1991, Table 2.1)
and that this knowledge is organized or
structured (Bedard & Chi, 1992). Second,
it assumes that the fundamental capacities
and domain-general reasoning abilities of
experts and non-experts are more or less
identical. Third, this framework assumes
that differences in the performance of
experts and non-experts are determined by
the differences in the way their knowledge
is represented.

Manifestations of Experts’ Skills
and Shortcomings

Numerous behavioral manifestations of
expertise have been identified in the

research literature and discussed at some
length (see edited volumes by Chi, Glaser, &
Farr, 1988; Ericsson & Smith, 1991; Ericsson,
1996; Feltovich, Ford, & Hoffman, 19q7;
Hoffman, 1992). Most of the research has
focused on how experts excel, either in
an absolute context or in comparison to
novices. However, it is equally important to
understand how experts fail. Knowing both
how they excel and how they fail will pro-
vide a more complete characterization of
expertise. This section addresses both sets of
characteristics.

Ways in which Experts Excel

I begin by very briefly highlighting seven
major ways in which experts excel because
this set of findings have been reviewed
extensively in the literature, followed by a
slightly more elaborate discussion of seven
ways in which they fall short.

GENERATING THE BEST

Experts excel in generating the best solu-
tion, such as the best move in chess, even
under time constraints (de Groot, 1965), or
the best solution in solving problems, or the
best design in a designing task. Moreover,
they can do this faster and more accurately
than non-experts (Klein, 1993).

DETECTION AND RECOGNITION

Experts can detect and see features that
novices cannot. For example, they can see
patterns and cue configurations in X-ray
films that novices cannot (Lesgold et al.,
1988). They can also perceive the “deep
structure” of a problem or situation (Chi,
Feltovich, & Glaser, 1981).

QUALITATIVE ANALYSES

Experts spend a relatively great deal of time
analyzing a problem qualitatively, devel-
oping a problem representation by adding
many domain-specific and general con-
straints to the problems in their domains
of expertise (Simon & Simon, 1978; Voss,
Greene, Post, & Penner, 1983).
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MONITORING

Experts have more accurate self-monitoring
skills in terms of their ability to detect
errors and the status of their own com-
prehension. In the domain of physics,
experts were more accurate than novices in
judging the difficulty of a problem (Chi,
Glaser, & Rees, 1982). In the domain of
chess, expert (Class B) chess players were
more accurate than novices in predicting
the number of pieces they thought they
could recall immediately or the number of
times they thought they needed to view a
chess position in order to recall the entire
position correctly. Moreover, the experts
were significantly more accurate in dis-
criminating their ability to recall the ran-
domized (positions with the pieces scram-
bled) from the meaningful chess positions,
whereas novices thought they could recall
equal number of pieces from the random-
ized as well as the meaningful positions

(Chi, 1978).

STRATEGIES

Experts are more successful at choosing the
appropriate strategies to use than novices.
For example, in solving physics problems,
the instructors tend to work forward,
starting from the given state to the goal
state, whereas students of physics tend to
work backwards, from the unknown to
the givens (Larkin, McDermott, Simon, &
Simon, 1980). Similarly, when confronted
with routine cases, expert clinicians diag-
nose with a data-driven (forward-working)
approach by applying a small set of rules
to the data; whereas less expert clini-
cians tend to use a hypothesis-driven (back-
ward chaining) approach (Patel & Kaufman,
1995). Even though both more-expert and
the less-expert groups can use both kinds
of strategies, one group may use one kind
more successfully than the other kind.
Experts not only will know which strat-
egy or procedure is better for a situa-
tion, but they also are more likely than
novices to use strategies that have more fre-
quently proved to be effective (Lemaire &

Siegler, 1995).

OPPORTUNISTIC

Experts are more opportunistic than
novices; they make use of whatever sources
of information are available while solv-
ing problems (Gilhooly et al., 1997) and
also exhibit more opportunism in using
resources.

COGNITIVE EFFORT
Experts can retrieve relevant domain knowl-
edge and strategies with minimal cognitive
effort (Alexander, 2003, p. 3). They can also
execute their skills with greater automatic-
ity (Schneider, 1985) and are able to exert
greater cognitive control over those aspects
of performance where control is desirable
(Ericsson, Chapter 13).

Ways in which Experts Fall Short

An equally important list might be ways in
which experts do not excel (Sternberg, 1996;
Sternberg & Frensch, 1992). Because much
less has been written about experts’ handi-
caps, I present a slightly more extensive dis-
cussion of seven ways in which experts do
not surpass novices. This list also excludes
limitations that are apparent in experts, but
in fact novices would be subjected to the
same limitations if they have the knowledge.
For example, experts often cannot articu-
late their knowledge because much of their
knowledge is tacit and their overt intuitions
can be flawed. This creates a science of
knowledge elicitation to collaboratively cre-
ate amodel of an expert’s knowledge (Ford &
Adams-Webber, 1992). However, this short-
coming is not listed below since novices
would most likely have the same problem
except that their limitation is less apparent
since they have less knowledge to explicate.

DOMAIN-LIMITED

Expertise is domain-limited. Experts do not
excel in recall for domains in which they
have no expertise. For example, the chess
master’s recall of randomized chess board
positions is much less accurate than the
recall for actual positions from chess games
(Gobet & Simon, 19906), and the engineer’s
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attempt to recall the state of affairs of
thermal-hydraulic processes that are not
physically meaningful is much less success-
ful than attempts to recall such states that
are meaningfull (Vicente, 1992). There are
a number of demonstrations from various
other domains that show experts’ superior
recall compared to novices for representa-
tive situations but not for randomly rear-
ranged versions of the same stimuli (Ericsson
& Lehmann, 1996; Vicente & Wang, 1998).
Thus, the superiority associated with their
expertise is very much limited to a specific
domain.

Of course there are exceptions. For exam-
ple, expert chess players can display a reli-
able, but comparatively small, superiority of
memory performance for randomized chess
positions when they are briefly presented
(see Gobet & Charness, Chapter 30), or
when the random positions are presented
at slower rates (Ericsson, Patel, & Kinstch,
2000). Nevertheless, in general, their exper-
tise is domain-limited.

OVERLY CONFIDENT

Experts can also miscalibrate their capabil-
ities by being overly confident. Chi (1978)
found that the experts (as compared to both
the novices and the intermediates) overesti-
mated the number of chess pieces they could
recall from coherent chess positions (see
Figure 9, left panel, Chi, 1978). Similarly,
physics and music experts overestimated
their comprehension of a physics or music
text, respectively, whereas novices were far
more accurate (Glenberg & Epstein, 1987).
It seems that experts can be overly confi-
dent in judgments related to their field of
expertise (Oskamp, 1965). Of course, there
are also domains, such as weather forecast-
ing, for which experts can be cautious and
conservative (Hoffman, Trafron, & Roebber
2005).

GLOSSING OVER

Although experts surpass novices in under-
standing and remembering the deep struc-
ture of a problem, a situation, or a computer
program, sometimes experts fail to recall

the surface features and overlook details. For
example, in recalling a text passage describ-
ing a baseball game, individuals with high
baseball knowledge actually recalled fewer
baseball-irrelevant sentences than individ-
uals with low baseball knowledge (Voss,
Vesonder, & Spilich, 1980), such as sentences
containing information about the weather
and the team. But high-knowledge indi-
viduals do recall information that is rele-
vant to the goal structure of the game, as
well as changes in the game states. Simi-
larly, in answering questions about computer
programs, novices are better than experts
for concrete questions, whereas experts are
better than novices for abstract questions
(Adelson, 1984).

In medical domains, after the presenta-
tion of an endocarditic case, 4th and 6th year
medical students recalled more propositions
about the case than the internists (Schmidt
& Boshuizen, 1993). Moreover, because the
internists’ biomedical knowledge was bet-
ter consolidated with their clinical knowl-
edge, resulting in “short cuts,” their expla-
nations thus made few references to basic
pathophysiological processes such as inflam-
mation. In short, it is as if experts gloss over
details that are the less relevant features of a
problem.

CONTEXT-DEPENDENCE WITHIN A DOMAIN

The first limitation of expertise stated above
is that it is restricted to a specific domain.
Moreover, within their domain of expertise,
experts rely on contextual cues. For exam-
ple, in a medical domain, experts seem to
rely on the tacit enabling conditions of a sit-
uation for diagnosis (Feltovich & Barrows,
1984). The enabling conditions are back-
ground information such as age, sex, previ-
ous diseases, occupation, drug use, and so
forth. These circumstances are not necessar-
ily causally related to diseases, but physicians
pick up and use such correlational knowl-
edge from clinical practice. When expert
physicians were presented the complaints
associated with a case along with patient
charts and pictures of the patients, they
were 50% more accurate than the novices in
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their diagnoses, and they were able to repro-
duce a large amount of context information
that was directly relevant to the patient’s
problem (Hobus, Schmidt, Boshuizen, &
Patel, 1987). The implication is that without
the contextual enabling information, expert
physicians might be more limited in their
ability to make an accurate diagnosis.

Experts’ skills have been shown to be
context-dependent in many other studies,
such as the failure of experienced waiters
to indicate the correct surface orientation
of liquid in a tilted container, despite their
experience in the context of wine glasses
(Hecht & Proffitt, 1995), and the inaccura-
cies of wildland fire fighters in predicting the
spread of bush fire when the wind and slope
are opposing rather than congruent, which is
an unusual situation (Lewandowsky, Dunn,
Kirsner, & Randell, 1997).

INFLEXIBLE

Although Hatano and Inagaki (1986) have
claimed that exceptional (versus routine)
experts are adaptive, sometimes experts do
have trouble adapting to changes in prob-
lems that have a deep structure that devi-
ates from those that are “acceptable” in the
domain. For example, Sternberg and Frensch
(1992) found that expert bridge players
suffered more than novice players when
the game’s bidding procedure was changed.
Similarly, expert tax accountants had more
difficulty than novice tax students in trans-
ferring knowledge from a tax case that dis-
qualified a general tax principle (Marchant,
Robinson, Anderson, & Schadewald, 1991).
Perhaps the experts in these studies are rou-
tine experts; but they nevertheless showed
less flexibility than the novices.

Inflexibility can be seen also in the use
of strategies by Brazilian street vendors who
can be considered “experts” in “street math-
ematics” (Schliemann & Carraher, 1993).
When presented with a problem in a pric-
ing context, such as “If 2 kg of rice cost 5
cruzeiros, how much do you have to pay
for 3 kg?,” they used mathematical strate-
gies with 9o% accuracies. However, when
presented with a problem in a recipe con-

text (“To make a cake with 2 cups of flour
you need 5 spoonfuls of water; how many
spoonfuls do you need for 3 cups of flour?”),
they did not adapt their mathematical strate-
gies. Instead, they used estimation strategies,
resulting in only 20% accuracies.

INACCURATE PREDICTION, JUDGMENT, AND ADVICE

Another weakness of experts is that some-
times they are inaccurate in their prediction
of novice performance. For example, one
would expect experts to be able to extrapo-
late from their own task-specific knowledge
how quickly or easily novices can accomplish
a task. In general, the greater the expertise
the worse off they were at predicting how
quickly novices can perform a task, such as
using a cell phone (Hinds, 1999). In tasks
requiring decision under uncertainty, such
as evaluating applicants for medical intern-
ships (Johnson, 1988) or predicting successes
in graduate school (Dawes, 1971), it has been
shown consistently that experts fail to make
better judgments than novices. Such lack
of superior decision making may be limited
to domains that involve predicting human
behavior, such as parole decisions, psychi-
atric judgment, and graduate school suc-
cesses (Shanteau, 1984).

An alternative interpretation of experts’
inaccuracies in making predictions is to pos-
tulate that they cannot take the perspectives
of the novices accurately. Compatible with
this interpretation is the finding that stu-
dents are far more able to incorporate feed-
back from their peers than from their expert
instructor in a writing task (Cho, 2004).

BIAS AND FUNCTIONAL FIXEDNESS

Bias is probably one of the most serious
handicaps of experts, especially in the med-
ical profession. Sometimes physicians are
biased by the probable survival or mor-
tality rates of a treatment. Christensen,
Heckerling, Mackesy, Berstein, and Elstein
(1991) found that residents were more sus-
ceptible to let the probable survival outcome
determine options for treatment, whereas
novice students were not. Fortunately, expe-
rienced physicians were not affected by
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the mortality rates either. In another study,
however, my colleagues and I found the
experienced physicians to manifest seri-
ous biases. We presented several types of
cases to specialists, such as hematologists,
cardiologists, and infectious disease spe-
cialists. Some were hematology cases and
others were cardiology cases. We found
that regardless of the type of specialized
case, specialists tended to generate hypothe-
ses that corresponded to their field of
expertise: Cardiologists tended to generate
more cardiology-type hypotheses, whether
the case was one of a blood disease or an
infectious disease (Hashem, Chi, & Fried-
man, 2003 ). This tendency to generate diag-
noses about which they have more knowl-
edge clearly can cause greater errors. More-
over, experts seem to be more susceptible
to suggestions that can bias their choices
than novices (Walther, Fiedler, & Nickel,
2003).

Greater domain knowledge can also be
deleterious by creating mental set or func-
tional fixedness. In a problem-solving con-
text, there is some suggestion that the more
knowledgeable participants exhibit more fu-
nctional fixedness in that they have more
difficulty coming up with creative solutions.
For example, in a remote association task,
three words are presented, such as plate, bro-
ken, and rest, and the subject’s task is to come
up with a fourth word that can form a famil-
iar phrase with each of the three words, such
as the word home for home plate (a baseball
term), broken home, and rest home. A “mis-
leading” set of three words can be plate, bro-
ken, and shot, in which the correct solution is
glass. High baseball knowledge subjects were
less able than low baseball knowledge sub-
jects to generate correct solutions to the mis-
leading type of problems because the first
word plate primed their baseball knowledge
so that it caused functional fixedness (Wiley,
1998).

In conclusion, the two sections above
each summarized seven ways in which
experts excel and seven ways in which they
fall short. Although much more research has
been carried out focusing on ways in which
experts’ greater knowledge allows them to

excel, itis equally important to know ways in
which their knowledge is limiting. The facil-
itations and limitations of knowledge can
provide boundary conditions for shaping a
theory of expertise.
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CHAPTER 3

Expertise, Talent, and Social
Encouragement

Earl Hunt

Introduction

There have literally been volumes of stud-
ies of expertise (Chi, Glaser, & Farr, 1988;
Ericsson, 1996; Ericsson & Smith, 1993;
Sternberg & Grigorenko, 2001). The fields
covered range from medicine to amateur
wrestling. In spite of this diversity, regular
themes emerge.

Experts know a lot about their field of
expertise. This is hardly surprising; an igno-
rant expert would be an oxymoron. Experts
work at becoming experts. The revealed wis-
dom is that this takes at least ten years
(Richman et al., 1996). In some fields the
time is spent perfecting the minutiae rather
than in the fun of solving problems or win-
ning games. Amateur musicians spend a
great deal of time playing pieces, whereas
professional musicians spend a great deal
of time practicing sequences of movements
(Ericsson, Krampe, & Tesch-Rémer, 1993).
Chess masters do not just play a lot of chess,
they read a lot of the chess literature.

Because practice is so important, some
psychologists have minimized the contri-
bution of talents developed before start-

ing on the path to expertise (Ericsson
et al., 1993; Sloboda, 1996). This position
is consistent with well-established labora-
tory findings showing that under certain cir-
cumstances extended practice can lead to
improvements in performance by an order
of magnitude, along with a huge reduction
in the range of interindividual differences
(Schneider & Shiffrin, 1977).

In this chapter I explore the relation
between studies of expertise and a few selec-
ted results from different areas of psychol-
ogy and economics. I shall argue that differ-
ent types of expertise make different types
of cognitive demands. Accordingly the bal-
ance between talent and practice may vary
with the field, but it will vary in a predictable
way. In addition, acquiring expertise is not
solely a cognitive matter. Personal interests
and social support are also very important.

Intelligence, Cognition,
and Experience

Any discussion of the role of talent versus
experience has to begin with an analysis of

31



32 THE CAMBRIDGE HANDBOOK OF EXPERTISE AND EXPERT PERFORMANCE

the role of intelligence. Operationally, intel-
ligence is usually defined by scores on tests
of cognitive abilities. Based on the distri-
butions of test scores, modern psychome-
tricians have largely agreed on a hierarchi-
cal model of intelligence, originally due to
Cattell (1971), in which general intelligence
“g” is inferred from positive correlations
between sets of broadly applicable but dis-
tinct cognitive abilities. These include a gen-
eralized reasoning ability (“fluid intelligence-
Gf"), the possession and use of knowledge
to solve problems (“crystallized intelligence-
Gc”), spatial-visual reasoning, a general abil-
ity to think quickly, and several other broad
factors (Carroll, 1993).

The distinction between g, Gf, and Gc
often drops out in discussions of the rela-
tion between intelligence and social out-
comes. This is unfortunate, for Gf and Gc
are measured by different instruments. The
Wechsler Adult Intelligence Scale (WAIS)
confounds Gf and Gc (Horn, 1985). Two
group tests that are widely used in industrial
and academic settings, the Armed Services
Vocational Aptitude Battery (ASVAB) and
the Scholastic Assessment Test (SAT) are
essentially tests of Gc, based on the general
knowledge and problem-solving skills that
one expects an American high school grad-
uate to have (Roberts et al., 2000). The best
tests of Gf, by contrast, are tests in which an
examinee must detect patterns in abstract
and unusual material (Jensen, 1998).

The definition of Gc ensures that any Ge
test is culture specific. Cattell (1971) antic-
ipated this when he noted that within a
person Gc consists of two components, a
general ability to use knowledge and the
possession of specific knowledge. He even
suggested that the proper evaluation of Gc
would require separate tests for every pro-
fession. The same spirit can be found in the
research of Sternberg et al. (2000) on “prac-
tical intelligence,” which is evaluated by tests
of culture- or subgroup-specific knowledge.

Gf and Gc are correlated, which makes it
possible to speak reasonably about g. How-
ever, the correlations between measures of
different types of cognitive abilities are high-
est toward the low end of the general intelli-

gence scale, and markedly lower at the high
end (Detterman & Daniel, 198¢; Deary etal.,
19906). This is important, as expertise is gen-
erally associated with high levels of perfor-
mance.

Measures of Gf have substantial corre-
lations with measures of the performance
of working memory. A high-Gf person is
probably good at keeping track of several
things at once and of concentrating his or her
attention in the face of distractions (Engle,
Kane & Tulhoski, 1999; Kyllonen & Christal,
1990). These talents are good to have dur-
ing the learning phase of most psychomo-
tor activities (e.g., skiing, riding a bicycle,
playing tennis). However, they are much less
needed once an activity has been learned.
Laboratory studies of how people learn to do
psychomotor tasks have shown that intelli-
gence is a reasonably good predictor of per-
formance early in learning but does not pre-
dict asymptotic levels of learning very well
(Ackerman 1996; Fleishman, 1972).

An important study by Ackerman and
Cianciolo (2000) modifies this conclusion.
Ackerman and Cianciolo reasoned that if
a task taxes working memory after it has
been learned, the correlation with tests of
reasoning should remain. They then trained
people on two different, greatly reduced
versions of an air traffic controller’s task.
One could be solved by memorizing a not-
too-complicated set of rules. To solve the
more complicated task the participant had
to develop orderly patterns of traffic in the
area near a terminal. Participants practiced
the tasks for several days. The correlation
between the first task and a measure of
fluid intelligence decreased over practice
from .45 to .30. The correlations between
the intelligence measure and performance
increased from .40 to .55 over the training
period.

There are obvious parallels between this
study and the general study of expertise.
Some aspects of expertise, such as swing-
ing a golf club, require learning a con-
stant relationship between stimulus and
response. Others aspects, such as the ana-
logical reasoning typical of the law, involve
varied mappings, the development of
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mental models of a situation, and extensive
knowledge. Demands on both Gf and Gc
never cease.

A second important observation is based
on studies of natural decision making. By
definition, experts make better decisions
than novices. However, this does not mean
that experts become better decision makers
in the sense that they learn to avoid the mis-
takes that have been documented in labora-
tory studies of decision making (Kahneman,
2003). Instead, experienced real-life deci-
sion makers rely on analogical reasoning and
schematic techniques for selecting and mon-
itoring a plan of action (Klein, 1998). This
kind of decision making depends on two
things: having the experiences on which the
analogies can be based and encoding those
experiences in a way that makes information
accessible when needed. Gc again!

Findings from Industrial-
Organizational Psychology

Although laboratory studies offer the advan-
tage of control, they cannot replicate the
very long periods of time over which exper-
tise is acquired in the workplace. The appro-
priate studies are the domain of indus-
trial-organizational, rather than cognitive,
psychology.

In the late 1980s the US military evalu-
ated various predictors of the performance
of enlisted men and women (Wigdor &
Green, 1991) in military occupations rang-
ing from artillerymen to cooks. Performance
increased with experience, but appeared to
asymptote after about three years. Asymp-
totic level of performance was related to
scores on a test of mental skills, the Armed
Forces Qualifying Test (AFQT), taken at
time of enlistment, but there was an
interaction.! Enlisted personnel with high
scores reached asymptotic performance in a
year, personnel with lower test scores took
longer. Differences in performance could be
related to the AFQT after more than three
years of service, but the differences were less
than half those for personnel with only a
year’s service. (See Hunt [1995 ] for a further

discussion of the general issue of intelligence
and workplace performance.)

Similar observations have been made in
the civilian sector. Scores on tests of cog-
nitive competence are related to workplace
performance, and the correlations are some-
what higher during training than during per-
formance after training (Schmidt & Hunter,
1998).?

The conclusions just offered were drawn
from analyses of jobs that might be charac-
terized as “blue collar” or “lower level white
collar.” Although the data base is more lim-
ited, the same thing seems to be true of
upper-level professional jobs. One large, par-
ticularly well-designed study of managers
found a correlation of .38 between cogni-
tive scores obtained at the outset of employ-
ment and level of management reached after
more than fifteen years on the job (Howard
& Bray, 1988).

Evidently intelligence-as-reasoning and
working memory are always important dur-
ing the early stages of learning, well before
the expert level is reached. A task analy-
sis is necessary to determine the extent to
which performance depends on reasoning
and working memory after the expert level
has been reached.

Specialized knowledge will always be
important if expertise depends largely on
the execution of psychomotor sequences,
as in ball-striking in golf. The sports exam-
ple is obvious. Psychomotor sequences are
important in other areas, including medicine
and piloting high-performance aircraft. In
other cases (e.g., the law, physics), exper-
tise requires the development of schema that
can guide problem solving. To some extent
the use of such schema can reduce the bur-
den on working memory, thus shifting the
balance between the Gf-and Gc-aspects of
intelligence.

Different types of expertise can be char-
acterized by their location on the psychomo-
tor/mental-modeling-and problem-solving/
use-of-experience dimensions. Almost every
task in which expertise can be illustrated
contains some elements of each dimension.

Will we ever be able to test people at
the outset of their experience, say early in
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high school, and predict who would become
experts solely on the basis of their talents?
Probably not, for we have not yet consid-
ered the social-personality aspect of expert
development.

Why Become an Expert?

Sternberg (1996) has observed that intelli-
gence is successful to the extent that it has
been used to meet one’s goals. It does not
make sense to do the work that it takes to be
an expert unless you want to be one. In order
to understand expertise we have to under-
stand interests.

Ackerman and his colleagues (Ackerman
& Beier, 2001; Ackerman & Rolfhus, 1999;
Rolthus & Ackerman, 1999) have shown that
within American society interests fall into
three definable clusters:science and math-
ematics, intellectual and cultural activity,
and social activities. People have knowl-
edge bases that correspond to their interests.
They also show markedly different personal-
ity profiles. Most important for our concerns
here, the amount of knowledge a person has
within his or her own interest area is best
predicted by measures of Gc, or the extent
to which a person has picked up knowledge
of the society in general.

Because intelligence is differentiated at
the upper end, one would expect differen-
tial patterns of ability to be particularly pre-
dictive of career choices of the gifted. They
are. Lubinski, Benbow, and their colleagues
have conducted longitudinal studies of gifted
students who, at age 13, were in the top
ten-thousandth of examinees on tests of ver-
bal and mathematical skill (Lubinski, Webb,
Morelock, & Benbow, 2001). They differ-
entiated between students who had signif-
icantly higher verbal scores than mathemat-
ics scores, or the reverse, and students who
were “high flat,” that is, verbal and mathe-
matical scores were essentially the same. It
is important to remember that in this group
a “low” score corresponds to above average
performance in the general population.

Overall the gifted students did very well.
Several had doctorates at age 23 or less;

many others were attending some of the
most prestigious graduate schools in the
country. Some had made substantial con-
tributions outside of academia. The type
of achievement differed by group. Students
whose mathematics scores were higher than
their verbal scores at age 13 gravitated to
mathematics and science courses in college,
students whose verbal scores were high-
est gravitated toward the humanities and
social sciences, and students with a flat pro-
file (very high scores everywhere) showed a
more even distribution of interests. Prefer-
ences appeared relatively early. Reports of
favorite class in high school mirrored later
professional specialization.

Talents are channeled by interests. In gen-
eral, people are more interested in things
they are good at than things they find diffi-
cult. The combination of talent and interest
leads to specialized knowledge, and knowl-
edge produces expertise. Society reacts to
the combination of talent and interest by
offering support, which leads to further
specialization.

Social Encouragement and Expertise

Because the acquisition of expertise re-
quires substantial effort, the social sup-
port provided during the learning phase
is extremely important. Chess experts
begin early, often by participation in chess
clubs (Charness, Krampe, & Mayr, 1990).
Lubinski et al.’s gifted students made sub-
stantial use of advanced placement courses
in high school and other educational accel-
eration programs. If we look at individual
cases, the amount of social support can be
dramatic. Gardner’s (1993 ) biographic study
of exceptional contributors to society, such
as Einstein and Picasso, stresses how these
great contributors were able to be single-
minded because they were supported by
family, friends, and colleagues, often at con-
siderable expense. At a less earthshaking
level of expertise, the 2004 winner of the
Wimbledon woman’s tennis tournament,
Maria Sharapova, received a scholarship to
a tennis academy at age eight!
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Figure 3.1. Differential reward indices as a function of type of occupation and
the percentile of the income distribution. Data derived from US Census 2000

income reports.

Because expertise requires motivation
and support, society has considerable lever-
age in deciding what types of exper-
tise will be developed, by varying the
extent to which rewards and support are
offered for expert compared to journeyman
performance.> Where does our own society
reward expertise?

Rewarding expertise has to be distin-
guished from rewarding an entire occupa-
tion. This can be done by defining the
differential reward index, D, (x) for the xth
percentile of an occupation, as

Income,ec(x)

Dyce(x) = (3-1)
Where D, (x) is the value of the reward
index at the xth percentile of the income dis-
tribution in occupation “occ,” Incomeye(x)
is the income at the xth percentile, and
Medianlncome is the median income for
the occupation. To illustrate, in 1999 the
median income for a physician or surgeon
(Incomeppysician(50)) was $120,000, while
Incomeypysician(75) was $200,000. Therefore,
for physicians and surgeons Dpgyician(75)
was 1.67. For people who made their liv-
ing fishing, Incomegger(50) was $25,000, far
less than the median income of physicians.

MedianIncome

However, Incomegge.(75) was $40,000, so
Dfsher(75) = 1.6. Society rewarded physi-
cians, as a group, far more than society
rewarded fishers, but within each group
the relative rewards for expert compared
to journeyman performance were about the
same.

Figure 3.1 shows the differential reward
indices for four groups of occupations
within our society. Financial business advi-
sors (including stock brokers) represent a
group whose compensation is closely tied to
their success. Three professions (physician-
surgeons, lawyers [excluding judicial offi-
cers], and dentists) generally derive income
on a fee-for-service basis, including partici-
pation in joint practices. Subgroups of pro-
fessionals who develop specialized exper-
tise (e.g., neurosurgeons, orthodontists, trial
lawyers) usually receive larger incomes than
general practitioners. Mathematicians (out-
side of academia) and aerospace engineers
also have high degrees of specialization, and
could, in principle, be rewarded for exper-
tise. Finally, high school teachers receive
income from salaries that are almost entirely
determined by their location of work and
years of seniority. Therefore they serve as a
control group.
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The differential reward index varied
markedly across occupations. Financial and
business advisors in the goth percentile of
their profession earned 3.5 times the median
income for their profession, whereas those at
the 10th percentile earned half the median
income. A similar but not-so-drastic acceler-
ation was shown for the physician-dentist-
lawyer group. The differential reward func-
tion for mathematicians and engineers was
almost identical to that for high school
teachers. In all groups acceleration occurred
at the top. The differential reward functions
were virtually linear from the 10th to the
soth percentile.

These data suggest, but certainly do not
prove, that our society encourages the devel-
opment of expertise in business, law, and
the biomedical professions. The figures do
not suggest very much encouragement for
the development of expertise in mathemat-
ics and engineering. It is of interest to note
that as of 2004 educators and policy makers
were deploring the dearth of American stu-
dents in engineering and mathematics, the
biomedical fields were prosperous, and busi-
ness schools were booming.

Bleske-Recheck, Lubinski, and Benbow
(2004) make a related point. They observed
that extremely gifted mathematics students
reported liking Advanced Placement classes
because it gave them an opportunity to
study with, and proceed at the pace of, their
academic peers. Bleske-Recheck et al. then
asked whether a well-documented trend
toward opening up Advanced Placement
classes to a greater range of students, in order
to encourage participation by students from
a wider spectrum of society, might actu-
ally make these classes less attractive to the
very gifted, and therefore channel talented
individuals away from the areas where they
might maximize their contributions. This is
not the place to debate the overall social
merits of opening up opportunities to non-
traditional students versus offering special
nurturance to the gifted. (Bleske-Recheck
et al. acknowledge that such benefits exist.)
What is relevant here is that experiences
relatively early in adolescence do motivate
students to make particular career choices.

If we need experts in some field we must
encourage people to acquire appropriate
expertise and reward them when they have
done so.

Closing Remarks

In order to understand the development of
expertise we have to distinguish between
expertise in perceptual-motor tasks and ex-
pertise in cognitive activities. Perceptual-
motor expertise requires automation in
the literal sense. Cognitive expertise re-
quires experience, and probably depends to
some extent on automated “nonconscious”
thought. It also depends very much on the
acquisition of knowledge.

Working memory and attention are gener-
ally considered to be the intellectual bottle-
necks on human thought. These are the pro-
cesses most taxed in the early stages of either
perceptual-motor learning or knowledge
acquisition. Therefore it is harder to become
an expert than to be one!Nevertheless, in
some areas of expert performance work-
ing memory demands, and hence demands
for high fluid intelligence, appear to extend
beyond the learning period.

This conclusion does not deny the impor-
tance of practice. Becoming an expert in
almost anything requires literally years of
work. People will do this only if they have
some initial success, enjoy the work, and are
supported by the social climate. Expertise is
not solely a cognitive affair.

Footnotes

1. The AFQT is a subset of the ASVAB, and
therefore a test of Ge.

2. Schmidt and Hunter refer to tests of general

cognitive competence. However, the tests that
they list appear to be tests mainly of Ge.

3. My claim is not that expertise is the sole deter-

miner of income. That would be silly. I do
claim, however, that expertise is one of the
determinants of income. Therefore the differ-
ential distribution of income within an occupa-
tion partly reflects payment for expertise and
partly reflects other features, such as seniority.
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CHAPTER 4

Studies of Expertise from
Psychological Perspectives

Paul J. Feltovich, Michael J. Prietula,
& K. Anders Ericsson

Introduction

The study of expertise has a very long his-
tory that has been discussed in several other
chapters in this handbook (Ericsson, Chap-
ter 1; Amirault & Branson, Chapter 5). This
chapter focuses on the influential develop-
ments within cognitive science and cognitive
psychology that have occurred over the last
three decades. Our chapter consists of two
parts. In the first part we briefly review what
we consider the major developments in cog-
nitive science and cognitive psychology that
led to the new field of expertise studies. In
the second part we attempt to characterize
some of the emerging insights about mecha-
nisms and aspects of expertise that general-
ize across domains, and we explore the orig-
inal theoretical accounts, along with more
recent ones.

The Development of Expertise Studies

In this handbook there are several pio-
neering research traditions represented that

were brought together to allow labora-
tory studies of expertise, along with the
development of formal models that can
reproduce the performance of the experts.
One early stream was the study of think-
ing using protocol analysis, where partici-
pants were instructed to “think aloud” while
solving everyday life problems (Duncker,
1945), and experts were asked to think
aloud while selecting moves for chess posi-
tions (de Groot, 1946/1965; Ericsson, Chap-
ter 13). Another stream developed out of
the research on judgment and decision mak-
ing, where researchers compared the judg-
ments of experts to those of statistical
models (Meehl, 1954; Yates & Tschirhart,
Chapter 24). The most important stream
was one inspired by describing human per-
formance with computational methods, in
particular, methods implemented as pro-
grams on the computer, such as Miller,
Galanter, and Pribram (1960), Reitman
(1965), and Newell and Simon, (1972).

In this chapter we emphasize a period of
research roughly from the mid 1950s into the
1970s, when empirical experimental studies
of thinking in the laboratory were combined

41
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with theoretical models of human thought
processes that could reproduce the observ-
able performance. Even though there was
important earlier work on expertise, this
was the period when a number of forces
came together to provide enough traction
for the field to “take off.” There were three
main sources to this impetus: artificial intel-
ligence, psychology, and education. We will
survey these briefly.

Early computer models developed by
Herbert Simon and Allen Newell demon-
strated that it is relatively easy for com-
putational devices to do some things wor-
thy of being considered “intelligent.” This
breakthrough at Carnegie-Mellon was based
on the confluence of two key realizations
that emerged from the intellectual milieu
that was developing between Carnegie and
Rand at the time (Prietula & Augier, 20053).
First, they (Al Newell, Cliff Shaw, and Herb
Simon) envisioned that computers could
be used to process “symbols and symbol
structures.” To explore this, they necessarily
developed what was to become the first list-
processing computer language, IPL, which
afforded them the ability to create arbitrarily
complex list structures and manipulate them
recursively. Second, they incorporated the
concept of “levels of abstraction” in articu-
lating their theories and, consequently, their
programs. These allowed them to address
two critical technical problems: the “spec-
ification problem,” in which the compo-
nents and processes of the target system are
sufficiently specified to capture the char-
acteristics of interest, and the “realization
problem,” in which the specification can be
implemented in an actual physical system
to enable synthesis (Newell & Simon, 1956).
The seeds of viewing humans and machines
as complex information-processing systems
had been sown.

During these early years, the first artifi-
cial intelligence program, called the Logic
Theorist (Newell & Simon, 19506), was writ-
ten. The Logic Theorist (LT) was coded in
IPL. Significantly, it was able to prove the-
orems in the predicate calculus in a manner
that mimics human adults (Newell & Simon,
1972). Of particular relevance to expertise,

LT was able to create some novel proofs. The
heuristics from LT were later generalized
into a model that could solve problems in
many different domains, the General Prob-
lem Solver (Ernst & Newell, 1969). There
were also other computer models that were
built, not as simulations of human prob-
lem solving, but based on effective computa-
tion designed to represent artificial methods
for producing intelligent action. For exam-
ple, Samuel’'s (1959) checker-playing pro-
gram was able to challenge and beat excel-
lent human checker players. These early,
along with subsequent, successes spawned
some themes regarding expertise pertinent
to the present chapter.

First, the idea that computation could
support intelligent behavior reinforced the
growing idea that computers and their pro-
grams could stand as formal models of
human cognition. This grew into a perva-
sive stance toward human and machine cog-
nition, the “information processing” model
that is still widely held. Cognitive psychol-
ogy and computer science merged into a
very close collaboration (along with linguis-
tics and a few other fields) that was later
named Cognitive Science. These computa-
tional models and theories provided at least
alternatives to the “behaviorist” (stimulus-
response, no internal mental mechanisms)
approaches that had dominated psychol-
ogy for the prior half a century (more
on this in our treatment of psychology
and expertise below). Newell and Simon,
two pioneers of the information-processing
viewpoint, asserted this forcefully:

As far as the great debates about the empty
organism, behaviorism, intervening vari-
ables, and hypothetical constructs are con-
cerned, we take these simply as a phase in
the development of psychology. Our theory
posits internal mechanisms of great extent
and complexity, and endeavors to make
contact between them and the visible evi-
dences of problem solving. That is all there
is to it. (Newell & Simon, 1972, pp. 9—10)

As we will address in our treatment of psy-
chological influences, it is quite difficult to
imagine what a field of studying expertise
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could have looked like if behaviorism had
continued to hold sway.

The second theme has to do with alter-
native basic approaches to achieving intel-
ligence in a computational device, what
have been termed “weak and strong meth-
ods” (Newell, 1973). The earliest success-
ful Al programs utilized weak reasoning and
problem-solving methods that were draw-
ing on descriptions of human thought pro-
cesses. Indeed, at one point Newell termed
artificial intelligence the “science of weak
methods,” at least as one characterization
of AI (Newell, 1973, page 9). Weak meth-
ods are highly portable, generalizable meth-
ods that do not depend on the particular
content of the domain of problem solving
but, in being so, are less capable of find-
ing solutions. Examples are “generate and
test” (produce and apply all possible known
next steps, and see if any of them yields
success) and “means-ends analysis” (repre-
sent the goal state, what you are trying to
achieve; represent where your progress has
brought you right now; and try to find some
currently available computational operator
that can decrease some aspect of the distance
between these. Repeat until done. Strong
methods are more heavily dependent on rich
knowledge of the problem-solving area and
an understanding of what kinds of operations
are likely to be successful in encountered
situations. They are domain specialists, not
generalists.

When early Al was being applied in
relatively simple and well-structured areas,
such as elementary games like checkers,
weak methods fared fairly well. As the
field developed and researchers started to
address richer, complex, and knowledge-
laden task environments, such as medicine
(Pauker, Gorry, Kassirer, & Schwartz, 1976;
Shortliffe, 1976) and chemical spectral anal-
ysis (Buchanan & Feigenbaum, 1978), the
need for ever-stronger methods became
clear. Portability across task domains had
to be sacrificed in favor of capability, but
narrowly restricted capability. The highly
successful “expert systems” industry that
eventually developed (Buchanan, Davis, &
Feigenbaum, Chapter 6) is in large part tes-

timony to the efficacy of strong methods.
As related to this chapter, this is impor-
tant because a similar progression unfolded
in other kinds of investigations of expertise,
including those in psychology (see later sec-
tions in this chapter on “Expertise Is Limited
in Its Scope and Elite Performance Does Not
Transfer”; and “Knowledge and Content Mat-
ter Are Important to Expertise”).

Behaviorism was the school of psychol-
ogy that eschewed resorting to unobserv-
able mental constructs, structural or process,
of any kind. Only the observable environ-
ment (the stimulus) and an organism’s overt
reaction (the response) were considered
the legitimate purview of a psychological
science. Behaviorism had dominated psy-
chology for much of the first half of
the twentieth century. During the reign
of behaviorism, considerable success was
obtained in analyzing complex skills in terms
of acquired habits, that is, as a large collec-
tion of stimulus-response pairs in the form
of learned reactions associated to specific
situations. The principle difficulties of this
approach were associated with explaining
the acquisition of abstract rules, creative use
of language, general mental capacities, and
logical reasoning in unfamiliar domains. It
was around the middle of the century that
this hold on the field began to loosen. There
was both a push side and a pull side to this
development.

On the push side, as we have noted,
stimulus-response models were facing great
difficulty in trying to account for complex
human processes such as language, reason-
ing, and abstractions that were indepen-
dently coming under increasing investiga-
tion. In this respect, the work of the linguist
Chomsky (1957) was critical. The findings
and theorizing out of linguistics were affect-
ing psychology, in exposing what seemed to
be significant inadequacies in accounting for
complex psychological processes. A notable
volume (Jakobovits & Miron, 1967), not
surprisingly focusing on language, brought
the camps head to head in their explana-
tory systems for complex human activity.
The Herculean effort by Osgood (1963),
reprinted in that volume, to save S-R theory
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in the face of discoveries about language, just
served in its cumbersomeness to prove the
inadequacies of S-R theories to account for
language.

On the pull side, theories, mechanisms,
and constructs were arising that showed
promise for providing an infrastructure
to support a new kind of psychology.
These included the development of the
information-processing viewpoint in psy-
chology, along with the platform to sup-
port it, the computer. Electrical engineer
Newell and economist/philosopher Simon
believed that what they were doing was psy-
chology (see earlier quote)! In fact, they
predicted in 1958 that “within ten years
most theories in psychology will take the
form of computer programs, or of quali-
tative statements about the characteristics
of computer programs” and discussed the
nature of heuristic search and ill-structured
problems (Simon & Newell, 1958, p. 7).
In his landmark volume titled “Cognitive
Psychology,” Ulric Neisser (1967) engaged
information-processing language and the
computer metaphor as advances that helped
enable the creation of a cognitive psychol-
ogy, and he acknowledged the contributions
of Newell, Shaw, and Simon in this regard
(Neisser, 1967, pp. 8—9).

Additionally, and often not indepen-
dently, researchers were progressively
encroaching the realm of the mental, study-
ing such things as planning (Miller, Galanter,
& Pribram, 1960), thinking (Bartlett, 1958;
Bruner, Goodnow, & Austin, 1956), and
mental structures and their functioning
(Bartlett, 1932; Miller, 1956). Not surpris-
ingly, groundbreaking progress in this regard
came from the information-processing
camp in their studies of problem solving
(Newell & Simon, 1972), especially in their
studies (following de Groot, 1946, 1965)
of expertise in chess (Chase & Simon,
19732, 1973b; See also Gobet & Charness,
Chapter 30). The clear, surprising, and even
enchanting findings (two people looking
at the very same “stimulus” can see totally
different things, even things that are not
actually there!) arising from this research
about the cognitive differences between
experts and novices stimulated others to

conduct such studies (Charness, 1970, 1979,
1981; Chi, 1978; Chi, Feltovich, & Glaser,
1981; Elstein, Shulman, & Sprafka, 1978;
Larkin, McDermott, Simon, & Simon,
1980), and the rest, as they say, is history.
The existence of this Cambridge Handbook
is its own best evidence for the subsequent
development and tremendous expansion
of the field of “Expertise Studies” into its
current myriad forms.

It is interesting to think about whether a
field of expertise studies could have emerged
at all — and if so, what it could possi-
bly have looked like — if alternatives to
behaviorism had not emerged. For instance,
would we have discovered that experts do
not just complete tasks and solve problems
faster and better than novices, but often
attain their solutions in qualitatively differ-
ent ways? Would we have discovered that
experts frequently spend a greater propor-
tion of their time in initial problem evalua-
tion compared to novices (e.g., Glaser & Chi,
1988, regarding “Experts spend a great deal
of time analyzing a problem qualitatively”;
Lesgold et al., 1988; see also Kellogg’s Chap-
ter 22 on planning by professional writers
and Noice & Noice’s Chapter 28 on the deep
encoding by professional actors as they study
their lines)?

We will, of course, never know, but
there was considerable interest in complex
thought processes among some of the behav-
iorists. For example, John B. Watson (1920)
was the first investigator to study problem
solving by instructing a participant to think
aloud while the participant figured out the
function of an object (Ericsson, Chapter 13).
Neo-behaviorists, such as Berlyne (1965),
proposed stimulus-response accounts for
complex goal-directed thought and cogni-
tive development. Today, behavior analysts
recommend the collection of think-aloud
protocols to better understand complex per-
formance (Austin, 2000). Given the broad
divide in the theoretical mechanisms used
by cognitive and behavioral researchers, it
is interesting that researchers are converg-
ing on methods of collecting observable
process indicators and have mutual inter-
est in large, reproducible differences in
performance.
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The last peg in the story of expertise stud-
ies that we consider is education and edu-
cational psychology. There are at least two
dimensions in the evolution of education
that are related to expertise studies, and that
we have also seen in the other influences
we have considered. First, like psychology,
educational theory and practice was under
the influence of behaviorism in and around
the mid century (Skinner, 1960; Watson,
1913). Both learning and teaching centered
around establishing appropriate stimulus-
response connections. “Programmed learn-
ing” and “teaching machines” were in vogue.
A representative example is the landmark
volume co-edited by Robert Glaser (Lums-
daine & Glaser, 1960), who would go on
to play a central role in newer incarna-
tions of educational and psychological the-
ory and practice. Essentially, a teaching
machine, in doing programmed learning,
would present questions or problems to
learners, one by one, and depending on the
student’s response either reinforce a correct
response or note an incorrect one (and per-
haps also provide some remedial guidance).
This process was believed to establish sta-
ble connections between problematic situa-
tions and appropriate situational responses.
What would expertise look like under such
a worldview? It is interesting in this regard
to examine a statement about this made by
one of Behaviorism's founders:

Mathematical behavior is usually regarded
not as a repertoire of responses involving
numbers and numerical operations, but as
evidence of mathematical ability or the
exercise of the power of reason. It is true that
the techniques which are emerging from
the experimental study of learning are not
designed to “develop the mind” or to fur-
ther some vague “understanding” of math-
ematical relationships. They are designed,
on the contrary, to establish the very behav-
iors which are taken to be evidences of such
mental states or processes. (Skinner, 1960,

pp. 111)

In this view, it seems expertise would be a
matter of responding well in challenging sit-
uations. Although modern views of exper-
tise retain this criterion of superior perfor-
mance, there is also considerable interest

and theorizing about mediating processes
and structures that support, and can be
developed to produce, these superior per-
formances (see later sections in this chap-
ter on “Expertise Involves Larger and More
Integrated Cognitive Units”; and “Expertise
Involves Functional, Abstracted Representa-
tions of Presented Information”). Interestingly,
however, current theorizing about the criti-
cal role of deliberate practice in the devel-
opment of expertise emphasizes mecha-
nisms not incompatible with these earlier
theories, in particular the need for clear
goals, repeated practice experiences, and
the vital role of feedback about the qual-
ity of attempts (Ericsson, Krampe, & Tesch-
Rémer, 1993). In addition, it is possible that
discoveries from behaviorist research about
different “schedules of reinforcement” (e.g.,
Ferster & Skinner, 1957), and their relation
to sustaining motivation and effort over long
periods of time, might contribute to our
understanding of how some people manage
to persevere through the very long periods
of practice and experience, involving both
successes and inevitably many failures, that
we now know are so essential to the devel-
opment of expert levels of skill. How to scaf-
fold sustained, consistent, purposeful effort,
over very long periods of time and despite
inevitable setbacks, appears at this time to
be one of the great puzzles to be solved in
developing a science of human excellence
(see Hunt, Chapter 3, for a discussion).
With the emergence of the cognitive
turn in psychology and educational psychol-
ogy, a new role for expertise studies also
emerged. Expert cognition was conceived
as the “goal state” for education, the cri-
terion for what the successful educational
process should produce, as well as a mea-
sure by which to assess its progress. In this
regard, advanced methods have now been
developed for eliciting and representing
the knowledge of experts (see Hoffman &
Lintern, Chapter 12) and for observing and
describing experts’ work practices in natu-
ral settings (see Clancey, Chapter 8). Novice
cognition (as well as that of various lev-
els of intermediates) could serve as “initial
states,” as models of the starting place for the
educational process. In a sort of means-ends
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analysis, the job of education was to deter-
mine the kinds of operations that could
transform the initial conditions into the
desired more expertlike ones (Glaser, 1970).
Although it is tempting to believe that upon
knowing how the expert does something,
one might be able to “teach” this to novices
directly, thishasnotbeen the case (e.g., Klein
& Hoffman, 1993). Expertise is a long-term
developmental process, resulting from rich
instrumental experiences in the world and
extensive practice. These cannot simply be
handed to someone (see the later section in
this chapter on “Simple Experience Is Not Suf-
ficient for the Development of Expertise”).

One venue in which expertise as “goal
state” has gained considerable use is
intelligent computer-based education, for
example, “intelligent tutoring systems.” (e.g.,
Clancey & Letsinger, 1984; Forbus &
Feltovich, 2001; Sleeman & Brown, 1982).
Such systems often utilize an “expert
model,” a representation of expert compe-
tence in a task, and a “student model,” a
representation of the learner’s pertinent cur-
rent understanding. Discrepancy between
the two often drives what instructional inter-
vention is engaged next. Another educa-
tional approach is to build tools for enhanc-
ing and accelerating experience (e.g., Klein
& Hoffman, 1993; Spiro, Collins, Thota, &
Feltovich, 2003), and this is closely related
to methods for analyzing the representa-
tive tasks to be mastered (see Schraagen,
Chapter 11).

Some early research on the difference
between experts and novices led directly
to the creation of new methods of instruc-
tion. This is particularly true in medical
education, where early expert-novice stud-
ies (Barrows, Feightner, Neufeld, & Norman,
1978; Elstein, Shulman, & Sprafka, 1978)
led to the creation of “problem-based learn-
ing” (Barrows & Tamblyn, 1980). Over a
long period of time, PBL (and variants)
has come to pervade medical education, as
well as making significant inroads into all
types of education, including K-12, univer-
sity, and every sort of professional educa-
tion (see Ward, Williams, & Hancock, Chap-
ter 14, for a review of the use of simulation
in training).

A second theme related to expertise stud-
ies that also appears in education, as well as
in the other contributors we have discussed,
is related to weak and strong methods
(Amirault & Branson, Chapter 5). As long
as there has been education, there has been
controversy about what constitutes an edu-
cated person, what such a person should
know and be able to do, and how to bring
such a person about. Examination of the
history of education as it relates to exper-
tise (Amirault & Branson, Chapter 5) reveals
the ebb and flow between understanding the
object of education (expertise) to be the
generalist (sound reasoning, broad knowl-
edge, critical thinking) or the specialist (one
who has undergone a great amount of train-
ing and experience in a limited domain of
activity and has acquired a vast knowledge
base specifically tailored for that activity).
As with the development of artificial intel-
ligence, our modern educational and psy-
chological conception of expertise seems to
favor the specialist and specialized skills,
honed over many years of extensive train-
ing and deliberate practice (Ericsson, Chap-
ter, 38). The notion of an “expert gen-
eralist” is difficult to capture within the
current explanatory systems in expertise
studies (e.g., Feltovich, Spiro, & Coulson,
1997; see also the discussion of the prepara-
tion for creative contributions by Weisberg,
Chapter 42).

Toward Generalizable Charactistics
of Expertise and Their Theoretical
Mechanisms

From the kinds of beginnings just discussed,
expertise studies have become a large and
active field. Fortunately, periodic volumes
have served to capture its state of devel-
opment over time (Anderson, 1981; Bloom,
1985; Chase, 1973; Chi, Glaser, & Farr, 1988;
Clancey & Shortliffe, 1984; Ericsson, 1996a;
Ericsson & Smith, 1991a; Feltovich, Ford, &
Hoffman, 1997; Hoffman, 1992; Starkes &
Allard, 1993; Starkes & Ericsson, 2003).
The remainder of the current chap-
ter attempts to crystallize the classic and
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enduring findings from the study of exper-
tise. It will draw on generalizable character-
istics of expertise identified in earlier reviews
(Glaser & Chi, 1988; Chi, Chapter 2) and
discuss them and other aspects in the light
of the pioneering research that uncovered
them. We will also discuss the original theo-
retical accounts for these findings. However,
where pertinent, we will also present more
recent challenges and extensions to these
classic accounts, including pertinent findings
and theoretical treatments reviewed in the
chapters of this handbook.

Expertise Is Limited in Its Scope and Elite
Performance Does Not Transfer

There is a general belief that talented peo-
ple display superior performance in a wide
range of activities, such as having superior
athletic ability and superior mental abilities.
However, if we restrict the claims to individ-
uals who can perform at very high levels in
a domain, then it is clear that people hardly
ever reach an elite level in more than a sin-
gle domain of activity (Ericsson & Lehmann,
1996). This has proven to be one of the most
enduring findings in the study of expertise
(see Glaser & Chi, 1988, Characteristic 1).
There is little transfer from high-level profi-
ciency in one domain to proficiency in other
domains — even when the domains seem,
intuitively, very similar.

For example, in tasks similar to those used
in the Simon and Chase chessboard stud-
ies, Eisenstadt and Kareev (1979) studied the
memory for brief displays for expert GO
and Gomoko players. Even though these two
games are played on the same board and use
the same pieces, GO players showed quite
poor performance on Gomoko displays, and
vice versa. In tasks involving political sci-
ence, for example, devising plans for increas-
ing crop production in the Soviet Union,
Voss and colleagues (Voss, Greene, Post, &
Penner, 1983; Voss, Tyler, & Yengo, 1983)
found that experts in chemistry (chem-
istry professors) performed very much like
novices in political science, in comparison
to political science experts (see Voss &
Wiley, Chapter 33, and Endsley, Chapter 36,
for more recent examples). Task specificity

is also characteristic of expertise involving
perceptual-motor skills (e.g., Fitts & Posner,
1967; Rosenbaum, Augustyn, Cohen, & Jax,
Chapter 29), as exemplified in many chap-
ters in this handbook, but in particular in
perceptual diagnosis and surgery (Norman,
Eva, Brooks, & Hamstra, Chapter 19), sports
(Hodges, Starkes, & MacMahon, Chap-
ter 27), and music (Lehmann & Gruber,
Chapter 26).

Some of the most solid early evidence for
specificity in expertise came from expert-
novice difference studies in medicine, inves-
tigating the clinical reasoning of practition-
ers (Barrows et al., 1978; Elstein et al., 1978).
These studies showed that the same physi-
cian can demonstrate widely different pro-
files of competence, depending on his or her
particular experiential history with differ-
ent types of cases. Indeed, in modern med-
ical education, where assessment of clinical
skill is often evaluated by performance on
real or simulated cases, it has been found
that because of the case-specificity of clin-
ical skill, a large number of cases (on the
order of fourteen to eighteen) are needed
to achieve an acceptably reliable assess-
ment of skill (Petrusa, 2002; Norman et al.,
Chapter 19).

Knowledge and Content Matter Are
Important to Expertise

In and around the late 1960s and the
1970s, maintaining a traditional distinction
between domain-specific skills and general
cognitive abilities was becoming less ten-
able. In research studies, knowledge was no
longer seen as a “nuisance variable” but as a
dominant source of variance in many human
tasks. In particular, Newell and Simon (1972)
found that problem solving and skilled per-
formance in a given domain were primar-
ily influenced by domain-specific acquired
patterns and associated actions. Domain-
specific skills and knowledge were also found
to influence even basic cognitive abilities.
For example, Glaser and others (Pellegrino
& Glaser, 19822,1982b) investigated basic
foundations of intelligence, including induc-
tion, and found evidence that even these
were strongly influenced by a person’s
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knowledge in the operative domain (for
example, a person’s conceptual knowledge
about numbers in number analogy and num-
ber series tasks).

Acquired knowledge in a domain was
found to be associated with changes in
fundamental types of cognitive processing.
For example, drawing on the expert-novice
paradigm, Chi (1978) compared experi-
enced chess-playing children with other
children in their performance on memory
and learning tasks related to chess. The dif-
ferences in experience, knowledge, and skill
in chess produced differences, in favor of
the chess players, in such basic learning pro-
cesses as the spontaneous use of memory
strategies (like grouping and rehearsal), the
ability to use such strategies even under
experimental prompting, and the amount of
information that could be held in short-term
memory (Chi, 1978).

Voss and colleagues (Chiesi, Spilich, &
Voss, 1979; Spilich, Vesonder, Chiesi, &
Voss, 1979) extended this kind of research
into other forms of learning. Studying high-
and low-knowledge individuals with regard
to the game of baseball, they found that,
compared to the low-knowledge individu-
als, high-knowledge ones exhibited superior
learning for materials from that and only
that particular domain. In particular, high-
knowledge individuals had greater recogni-
tion and recall memory for new material,
could make useful inferences from smaller
amounts of partial information, and were
better able to integrate new material within
a coherent and interconnected framework
(organized, for instance, under a common
goal structure).

Some studies showed reasoning itself to
be dependent on knowledge. Wason and
Johnson-Laird (1972) presented evidence
that individuals perform poorly in testing
the implications of logical inference rules
(e.g., if p then q) when the rules are stated
abstractly. Performance greatly improves for
concrete instances of the same rules (e.g.,
“every time I go to Manchester, I go by
train”). Rumelhart (1979), in an extension
of this work, found that nearly five times
as many participants were able to test cor-

rectly the implications of a simple, single-
conditional logical expression when it was
stated in terms of a realistic setting (e.g.,
a work setting: “every purchase over thirty
dollars must be approved by the regional
manager”) versus when the expression was
stated in an understandable but less mean-
ingful form (e.g., “every card with a vowel
on the front must have an integer on
the back”).

These kinds of studies in the psychology
of learning and reasoning were mirrored by
developments within artificial intelligence.
There was an evolution from systems in
which knowledge (declarative) and reason-
ing (procedural) were clearly separated, to
systems in which these components were
indistinct or at least strongly interacted. For
example, early computer systems, such as
Green’s QA3 (Green, 1969) and Quillian’s
TLC (Quillian, 1969), utilized databases of
declarative knowledge and a few general-
purpose reasoning algorithms for operating
on those knowledge bases. Such systems
were progressively supplanted by ones in
which the separation between knowledge
and reasoning was not nearly as distinct, and
in which general reasoning algorithms gave
way to more narrowly applicable reasoning
strategies, embedded in procedures for oper-
ating within specific domains of knowledge
(e.g., Norman, Rumelhart, & LNR, 1979;
Sacerdoti, 1977; VanLehn & Seely-Brown,
1979; Winograd, 1975).

It was within this kind of context that
studies of expertise and expert-novice differ-
ences, along with the growth of knowledge-
intense “expert systems” in artificial intel-
ligence (e.g., Shortliffe, 1976; Buchanan,
Davis, & Feigenbaum, Chapter 6), began also
to emphasize the criticality of knowledge.
This was evident in the progression in Al
from weak to strong methods, and within
psychology in the growing recognition of the
role in expertise of such knowledge-based
features as perceptual chunking, knowledge
organization, knowledge differentiation, and
effective perceptual-knowledge coupling.

This research clearly rejects the classi-
cal views on human cognition, in which
general abilities such as learning, reasoning,
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problem solving, and concept formation cor-
respond to capacities and abilities that can
be studied independently of the content
domains. In fact, inspired by the pioneer-
ing work by Ebbinghaus (1885/1964) on
memory for nonsense syllables, most lab-
oratory research utilized stimulus materi-
als for which the prior experience of par-
ticipants was minimized, in order to allow
investigators to study the cognitive processes
of learning, reasoning, and problem solv-
ing in their “purest” forms. This kind of
research, some examples of which were dis-
cussed earlier in this section, showed that
participants, when confronted with unfa-
miliar materials in laboratory tasks, demon-
strated surprisingly poor performance. In
contrast, when tested with materials and
tasks from familiar domains of everyday
activity, people exhibited effective reason-
ing, learning, and problem solving. Simi-
larly, the performance of experts is supe-
rior to novices and less-skilled individuals
primarily for tasks that are representative
of their typical activities in their domain
of expertise — the domain specificity of
expertise (see the earlier section “Expertise
Is Limited”).

In the expert-performance approach to
expertise, researchers attempt to identify
those tasks that best capture the essence of
expert performance in the corresponding
domain, and then standardize representa-
tive tasks that can be presented to experts
and novices. By having experts repeat-
edly perform these types of tasks, exper-
imenters can identify, with experimental
and process-tracing techniques, those com-
plex mechanisms that mediate their supe-
rior performance (Ericsson, Chapter 13 and
Chapter 38). The experts’ superior perfor-
mance on tasks related to their domain of
expertise can be described by psychometric
factors (expert reasoning and expert working
memory) that differ from those general abil-
ity factors used to describe the performance
of novices (Horn & Masunaga, Chapter 34,
and see Ackerman & Beier, Chapter ¢, for a
review of individual differences as a function
of level of expertise). In short, knowledge
matters (Steier & Mitchell, 1990).

Expertise Involves Larger and More
Integrated Cognitive Units

With increased experience and practice,
most people cognitively organize the per-
ceptually available information in their
working environment into larger units. This
is a classic and one of the best-established
phenomenon in expertise (Glaser & Chi,
1988, Characteristic 2). It is supported by
a long line of research, but was first discov-
ered in the game of chess (see also Gobet &
Charness, Chapter 30).

In the 1960s and early 1970s, de Groot
(1965) and Chase and Simon (19734, 1973b)
studied master-level and less-accomplished
chess players. In the basic experimental task,
participants were shown a chess board with
pieces representing game positions from real
games. Participants were shown the posi-
tions for only five seconds, and they were
then asked to reproduce the positions they
had seen.

After this brief glance, an expert was able
to reproduce much more of the configura-
tion than a novice. In the studies by Chase
and Simon (19732, 1973b) noted earlier, the
expert recalled four to five times the num-
ber of pieces recalled by the novice. In the
similar studies by de Groot, the recall per-
formance by world-class players was nearly
perfect (for 25-piece boards). In contrast,
novices were able to reproduce about five
pieces, or about the number of items that can
be maintained in short-term memory exclu-
sively by rehearsal.

The original, classical explanation by
Chase and Simon (Simon & Chase, 1973;
Chase & Simon, 19732, 1973b) for expert
superiority involved “chunking” in percep-
tion and memory. With experience, experts
acquire a large “vocabulary,” or memory
store, of board patterns involving groups of
pieces, or what were called chunks. A chunk
is a perceptual or memory structure that
bonds a number of more elementary units
into a larger organization (e.g., the individual
letters “c”, “a,” and “r” into the word “car”).
When experts see a chess position from areal
game, they are able to rapidly recognize such
familiar patterns. They can then associate
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these patterns with moves stored in mem-
ory that have proven to be good moves in
the past. Novices do not have enough expo-
sure to game configurations to have devel-
oped many of these kinds of patterns. Hence
they deal with the board in a piece-by-piece
manner. Similarly, when experts are pre-
sented with chess boards composed of ran-
domly placed pieces that do not enable the
experts to take advantage of established pat-
terns, their advantage over novices for ran-
dom configurations amounts to only a few
additional pieces.

These basic phenomena attributed to
chunking were replicated many times, in
chess but also in other fields (e.g., the
games of bridge, Engle & Bukstel, 1978;
GO, Reitman, 1976; and electronics, Egan &
Schwartz, 1979). In many such studies, it is
the chunk size that is larger for experts. Both
the novice and the expert are constrained
by the same limitations of short-term (or
working) memory (Cowan, Chen, & Rouder,
2004; Miller 1956). However, expert chunks
are larger. A chess novice sees a number of
independent chess pieces; the expert recog-
nizes about the same number of larger units.
For example, one chunk of chess pieces for
an expert might be a “king defense configu-
ration,” composed of a number of individual
chess pieces.

As we have just discussed, it was orig-
inally believed that experts develop larger
chunks and that these enable the expert to
functionally expand the size of short-term
or working memory. However, in the mid-
1970s, Charness (1970) showed that expert
chess players do not rely on a transient short-
term memory for storage of briefly presented
chess positions. In fact, they are able to recall
positions, even after the contents of their
short-term memory have been completely
disrupted by an interfering activity. Subse-
quent research has shown that chess experts
have acquired memory skills that enable
them to encode chess positions in long-
term working memory (LTWM, Ericsson &
Kintsch, 1995). The encoding and storage of
the chess positions in LTWM allow experts
to recall presented chess positions after dis-
ruptions of short-term memory, as well as

being able to recall multiple chess boards
presented in rapid succession (see Ericsson,
Chapter 13, and Gobet & Charness, Chap-
ter 30, for an extended discussion of new
theoretical mechanisms accounting for the
experts’ expanded working memory). The
experts’ superior ability to encode repre-
sentative information from their domain of
expertise and store it in long-term memory,
such that they can efficiently retrieve mean-
ingful relations, provides an alternative to
the original account of superior memory in
terms of larger chunks stored in STM. There
is another, similar characteristic of expertise.
It has to do with the nature and organiza-
tion of the perceptual encoding and mem-
ory structures experts develop and use. This
is discussed next.

Expertise Involves Functional, Abstracted
Representations of Presented Information

Some studies, utilizing methods similar to
the Simon and Chase chessboard paradigm,
examined the nature of expert and novice
cognitive units, such as chunks or other
knowledge structures. Chase and Simon
(19733, 1973b) themselves analyzed the
characteristics of the chess pieces their
experts grouped together as they repro-
duced a chess position after a brief presenta-
tion. Expert configurations of chess pieces
were based largely on strategic aspects of
the game, for example, configurations repre-
senting elements of threat or opportunity. It
was not clear how novice units were orga-
nized. Glaser and Chi (1988) identified a
related general characteristic, namely, that
“Experts see and represent a problem in their
domain at a deeper (more principled) level
than novices; novices tend to represent a
problem at a superficial level” (p. xviii). Our
characterization for expert representations,
“functional and abstracted” as elaborated
next, simply seeks to provide a bit more
insight into the nature of “deep” (see Chi,
Chapter 10, for a review of research on
assessments of experts’ cognitive represen-
tations).

Early studies involving bridge (Charness,
1979, Engle & Bukstel, 1978) and electronics
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(Egan & Schwartz, 1979), patterned after the
Chase and Simon procedure, showed simi-
lar results. In the bridge studies, experts and
novices were briefly presented depictions
of four-handed bridge deals, and they were
required to reproduce these deals. Experts
reproduced the cards by suit, across hands.
They remembered cards of the same suit
from three hands and inferred the fourth;
this is an organization useful in playing the
game of bridge. Novices recalled the cards
by order of card rank within hands, an orga-
nization not useful to supporting strategic
aspects of the game. In electronics, sub-
jects were shown an electronic circuit dia-
gram, which they were then to reproduce.
Experts grouped individual diagram com-
ponents into major electronic components
(e.g., amplifiers, filters, rectifiers). Novice
organization was based largely on the spa-
tial proximity of symbols appearing in the
diagram.

Similar results have been shown from
yet other fields, using somewhat different
methodologies that compared the perfor-
mance of groups of adults who differ in
their knowledge about a given domain. For
example, Voss and colleagues (Spilich et
al., 1979) studied ardent baseball fans and
more casual baseball observers. Participants
were presented a colorful description of a
half-inning of baseball and were then asked
to recall the half-inning. Expert recall was
structured by major goal-related sequences
of the game, such as advancing runners, scor-
ing runs, and preventing scoring. Novices’
recall contained less integral components,
for example, observations about the weather
and the crowd mood. Novice recall did
not capture basic game-advancing, sequen-
tial activity nearly as well. More recent
research on fans that differ in their knowl-
edge about soccer and baseball has found
that comprehension and memory for texts
describing games from these sports is more
influenced by relevant knowledge than by
verbal IQ scores (see Hambrick & Engle,
2002, for a recent study and a review of
earlier work).

Two early studies of computer program-
ming produced similar results. McKeithen,

Reitman, Reuter, and Hirtle (1981) pre-
sented a list of 21 commands in the ALGOL
language to ALGOL experts, students after
one ALGOL course, and students at the
beginning of an ALGOL course. Participants
were given 25 recall trials after they ini-
tially learned the list. The organization of
the recalled items by pre-ALGOL students
was by surface features of commands (e.g.,
commands with the same beginning letter or
same length of command name) and groups
of commands forming natural language seg-
ments (e.g., “STRING IS NULL BITS”) that
have no conceptual meaning within the lan-
guage. Experts, in contrast, grouped com-
mands that formed mini ALGOL algorithms
(e.g., formation of loops) or constituted
types of ALGOL data structures. Students,
after an ALGOL course, produced group-
ings that were a mixture of surface-related
and meaningful ALGOL organizations.

In a similar study, Adelson (1981) pre-
sented a list of programming commands,
constituting three intact computer pro-
grams, scrambled together and out of order,
to expert and novice programmers. Partici-
pants were required to recall the list. Over
recall trials, experts reconstructed the orig-
inal three algorithms. The organization of
novice recall was by syntactic similarities in
individual command statements, regardless
of the embedded source algorithms. Sonnen-
tag, Niessen, and Volmer (Chapter 21) pro-
vide a review of the more recent research
on knowledge representations and superior
performance of software experts.

Other pertinent findings came from early
work in physics (Chi et al., 1981) and
medicine (Feltovich, Johnson, Moller, &
Swanson, 1984; Johnson et al., 1981). In the
basic task from the physics study, problems
from chapters in an introductory physics
text were placed on individual cards. Expert
(professors and advanced graduate students)
and novice (college students after their first
mechanics course) physics problem solvers
sorted the cards into groups of problems
they would “solve in a similar manner.”
The finding was that experts created groups
based on the major physics principles (e.g.,
conservation and force laws) applicable in
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the problems’ solutions. Novice groupings
were organized by salient objects (e.g.,
springs, inclined planes) and features con-
tained in the problem statement itself. Sim-
ilarly, in studies of expert and novice diag-
noses within a subspecialty of medicine,
expert diagnosticians organized diagnostic
hypotheses according to the major patho-
physiological issue relevant in a case (i.e.,
constituting the “Logical Competitor Set”
of reasonable alternatives for the case, e.g.,
lesions involving right-sided heart volume
overload), whereas novice hypotheses were
more isolated and more dependent on par-
ticular patient cues.

Zeitz (1997) has reviewed these and
more recent studies of this type, investigat-
ing what she calls experts’ use of “Mod-
erately Abstracted Conceptual Representa-
tions”(MACRs), which are representational
abstractions of the type just discussed. She
proposes numerous ways in which such
abstraction aids the efficient utilization of
knowledge and reasoning by experts. These
include: (a) the role of abstracted repre-
sentations in retrieving appropriate material
from memory (e.g., Chi et al., 1981); (b) the
schematic nature of MACRs in integrating
information and revealing what information
is important, (c) providing guidance for a
line of action and supporting justification
for such a line of approach (e.g., Phelps &
Shanteau, 1978; Schmidt et al., 1989; Voss
et al., 1983); (d) aiding productive analogi-
cal reasoning (e.g., Gentner, 1988); and (e)
providing abstract representations that sup-
port experts’ reasoning and evaluation of
diagnostic alternatives (e.g., Patel, Arocha, &
Kaufman, 1994).

The functional nature of experts’ rep-
resentations extends to entire activities or
events. Ericsson and Kintsch (1995) pro-
posed that experts acquire skills for encod-
ing new relevant information in LTWM to
allow direct access when it is relevant and to
support the continual updating of a men-
tal model of the current situation — akin
to the situational models created by readers
when they read books (see Endsley, Chap-
ter 36, on the expert’s superior ability to
monitor the current situation — “situational

awareness”). This general theoretical frame-
work can account for the slow acquisition of
abstract representations that support plan-
ning, reasoning, monitoring, and evaluation
(Ericsson, Patel, & Kintsch, 2000). For exam-
ple, studies of expert fire fighters have shown
that experts interpret any scene of a fire
dynamically, in terms of what likely pre-
ceded it and how it will likely evolve. This
kind of understanding supports efforts to
intervene in the fire. Novices interpret these
scenes in terms of perceptually salient char-
acteristics, for example, color and inten-
sity (Klein, 1998, and see Ross, Shafer, &
Klein, Chapter 23). Studies of expert sur-
geons have shown that some actions within
a surgery have no real value for imme-
diate purposes, but are made in order to
make some later move more efficient or
effective (Koschmann, LeBaron, Goodwin,
& Feltovich, 2001). The research on expert
chess players shows consistent evidence for
extensive planning and evaluation of conse-
quences of alternative move sequences (See
Ericsson, Chapter 13, and Gobet & Charness,
Chapter 30). Furthermore, there is consid-
erable evidence pertaining to experts’ elab-
orated encoding of the current situation,
such as in situational awareness (Endsely,
Chapter 36), mental models (Durso & Dat-
tel, Chapter 20), and LTWM (Noice &
Noice, Chapter, 28).

In summary, research conducted in the
last thirty or so years indicates that expert
performers acquire skills to develop com-
plex representations that allow them imme-
diate and integrated access to information
and knowledge relevant to the demands of
action in current situations and tasks. These
acquired skills can account also for the their
superior memory performance when they
are given a task, such as recalling a briefly
presented chess position, as in the stud-
ies by Chase and Simon (197323, 1973b).
Novices, on the other hand, lack such knowl-
edge and associated representations and
skills, and thus perform these tasks with the
only knowledge and skills they have avail-
able. They try to impose organization and
meaningful relations, but their attempts are
piecemeal and less relevant to effectively
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functioning in the task domain, organized,
for example, by items named in a situation,
current salient features, proximity of entities
to others, or superficial analogies.

Expertise Involves Automated
Basic Strokes

Most people considered to be experts are
individuals with extreme amounts of prac-
tice on a circumscribed set of tasks in
their work environment. For example, some
expert radiologists estimated they had ana-
lyzed more than half a million radiographs
(X-rays) in their careers (Lesgold et al.,
1088). Such experience, appropriately con-
ducted, can yield effective, major behav-
ioral and brain changes (Hill & Schneider,
Chapter 37).

Research on the effects of practice has
found that the character of cognitive oper-
ations changes after even a couple of hours
of practice on a typical laboratory task.
Operations that are initially slow, serial,
and demand conscious attention become
fast, less deliberate, and can run in parallel
with other processes (Schneider & Shiffrin,
1977). With enough practice, one can learn
how do several tasks at the same time.
Behavioral studies of skill acquisition have
demonstrated that automaticity is central
to the development of expertise, and prac-
tice is the means to automaticity (Posner
& Snyder, 1975, see also Proctor & Vu,
Chapter 15). Through the act of prac-
tice (with appropriate feedback, monitor-
ing, etc.), the character of cognitive opera-
tions changes in a manner that (a) improves
the speed of the operations, (b) improves
the smoothness of the operations, and (c)
reduces the cognitive demands of the oper-
ations, thus releasing cognitive (e.g., atten-
tional) resources for other (often higher)
functions (e.g., planning, self-monitoring;
see also Endsley Chapter 36). Automatic
processes seem resistant to disruption by
reduced cognitive capacity and, to a lim-
ited degree, are largely resource insensi-
tive (Schneider & Fisk, 1982). Interestingly,
fMRI studies have demonstrated that shifts
to automaticity reveal a shift (decrease) in

activity in a certain part of the brain, but
not a shift in anatomical loci (Jansma, Ram-
sey, Slagter, & Kahn, 2001; Hill & Schneider,
Chapter 37).

There are many examples in the early
expertise-related literature of the effects
of practice on dual-task performance of
experts. For example, expert typists can type
and recite nursery rhymes at the same time
(Shaffer, 1975). Skilled abacus operators can
answer routine questions (“What is your
favorite food?”) without loss of accuracy or
speed in working with the abacus (Hatano,
Miyake, & Binks, 1977). After six weeks of
practice (one hour per day), college students
could read unfamiliar text while simulta-
neously copying words read by an experi-
menter, without decrement in reading speed
or comprehension (Spelke, Hirst, & Neisser,
1970).

Automaticity is important to expertise. It
appears it has at least two main functions.
The first has to do with the relationship
between fundamental and higher-order cog-
nitive skills, and the second has to do with
the interaction between automaticity of pro-
cesses and usability of available knowledge.

With regard to the first, in complex skills
with many different cognitive components,
it appears that some of the more basic ones
(e.g., fundamental decoding, encoding of
input) must be automated if higher-level
skills such as reasoning, comprehension, inf-
erence, monitoring, and integration are ever
to be proficient (e.g., Logan, 1985; Endsley,
Chapter 36). For example, in a longitudi-
nal study, Lesgold and Resnick (1982) fol-
lowed the same group of children from their
initial exposure to reading in kindergarten
through third and fourth grade. They found,
for example, that if basic reading skills do
not become automated, such as the decoding
and encoding of letters and words, compre-
hension skills will not substantially develop.
Furthermore, the relationship seems to be
causal; that is, speed increases in word skills
predict comprehension increases later on,
whereas increases in comprehension do not
predict increases in word facility. However,
subsequent pertinent research has accentu-
ated the complex-nature of the relationship
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between automated basic processes and
higher-order deliberate ones and point to
the need for continued research (Hill &
Schneider, Chapter 37).

There is also a possible interaction
between automaticity of processes and the
usability of available knowledge. Investiga-
tors (e.g., Feltovich et al., 1984; Jeffries
et al., 1981) have suggested that a major
limitation of novices is their inability to
access knowledge in relevant situations, even
when they can retrieve the same knowledge
when explicitly cued by the experimenter.
Problems in knowledge usability may be
associated with overload or inefficiency in
using working (or short-term) memory. The
usable knowledge of experts may, in turn,
result from the subordination of many task
components to automatic processing, which
increases capability for controlled manage-
ment of memory and knowledge application
(cf. Perfetti & Lesgold, 1979).

An alternative proposal about usability
of knowledge has subsequently been made
by Ericsson and Kintsch (1995), in which
experts acquire skills that are designed to
encode relevant information in long-term
memory (LTM) in a manner that allows
automatic retrieval from I'TM when later
needed, as indicated by subsequent acti-
vation of certain combinations of cues in
attention. They argued that experts acquire
LTWM skills that enable them, when they
encounter new information (such as a
new symptom during an interview with a
patient), to encode the relevant associations
such that when yet other related information
is encountered (such as subsequent infor-
mation reported by the patient), the expert
will automatically access relevant aspects
of the earlier information to guide encod-
ing and reasoning. The key constraint for
skilled encoding in LTM is that the expert
be able to anticipate potential future con-
texts where the encountered information
might become relevant. Only then will the
expert be able to encode encountered infor-
mation in LTWM in such a way that its
future relevance is anticipated and the rel-
evant pieces of information can be automat-
ically activated when the subsequent rele-

vant contexts are encountered. In this model
of the experts’ working memory storage in
LTM, the large capacity of LTM allows the
expert to preserve access to a large body of
relevant information without any need to
actively maintain the information in a lim-
ited general capacity STM (Ericsson, Chap-
ter 13; Gobet & Charness, Chapter 30; Noice
& Noice, Chapter 28; Wilding & Valentine,
Chapter 31).

Expertise Involves Selective Access
of Relevant Information

Within the classical expertise framework
based on chunking, questions about access
to task-relevant information are important
issues, and a critical aspect of intelligence
(Sternberg, 1984). Given the functional
nature of expert representations, how are
they properly engaged in the context of solv-
ing a problem? To what kind of problem fea-
tures do experts attend? How are these fea-
tures “linked up” to the significant concepts
in memory? In a sense, having a trace laid
down in memory is not a sufficient condi-
tion for use. Extant traces must be accessed
and important non-extant traces must be
inferred or otherwise computed.

This characteristic of expertise addresses
the critical problem of accessing knowledge
structures. This development overcomes (at
least) two difficulties for expertise as a “big
switch” (Newell, 1973) between the recog-
nition of familiar events and application
of experience associated with those events
(see also Ross, Shafer, & Klein, Chapter 23,
“recognition-primed decision making). The
first of these is related to the variability
in events; one cannot “step into the same
river twice.” The useful utilization of events
as familiar requires a degree of appropri-
ate abstraction, both in the event features
utilized and in the memory organization
imposed on the memory models them-
selves. The former adaptation is reflected in
expert utilization of abstracted features for
problem classification, features whose loci
in a problem statement are not apparent
(Chi et al,, 1981). The latter adaptation is
reflected in the development of hierarchical
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organizations, which characterize expert or
experienced memory (e.g., Feltovich et al.,
1984; Patil, Szolovits, & Schwartz, 1981).

Critical to this characteristic is selectivity.
Selectivity is based on the attribution of dif-
ferential importance or, broadly conceived, a
separation of signal from noise either in the
features extracted from events or on inter-
nal cognitive processes themselves (see also
Hill & Schneider, Chapter 37). Selectivity,
as a means of task adaptation, is assumed
to be forced on the human based on their
limited cognitive capacity. With regard to
events, selectivity involves the abstraction of
invariances of the discriminating cues that
define types of situations or are otherwise
integral to a task. Expertise, then, involves
learning which information is most useful
and which is tangential or superfluous (e.g.,
Chi et al., 1981; Hinsley et al., 1978; Patel &
Groen, 1991; Spilich et al., 1979). In certain
types of “stable” environments, the impor-
tant invariance is well defined and the task
is sufficiently constrained so that the mech-
anisms linking selectivity and performance
can be explicated. For example, as consistent
with the LTWM hypothesis, skilled typists
appear to achieve subordination, usability,
and access by developing integrated repre-
sentations of letters and key presses that
facilitate translation between perception and
response (Rieger, 2004).

This theme of expertise also reflects the
general problem of knowledge inversion;
that is, the notion of moving from a concept-
centered mode of reasoning to a mode that
must somehow scan the problem features
for regularities, incorporate abstraction,
integrate multiple cues, and accept natural
variation in patterns to invoke aspects of the
relevant concept. We find this in many fields.
For example, medical students acquire much
specific “disease-centered” knowledge -
given disease X, this is the underlying patho-
physiology, these are the variations, and
these are the classic manifestations. When
faced with a patient, however, they are
presented with just the opposite situation:
Given a patient, what is the disease? Recent
developments in medical education focus
on case-oriented learning in which medical

students are given early exposure to rep-
resentative clinical situations. This type of
training forces learners to develop mental
representations and an LTWM that support
medical reasoning under real-time, represen-
tative constraints (Norman, Eva, Brooks, &
Hamstra, Chapter 19; Ericsson, Chapter 13;
Endsley, Chapter 30).

Expertise Involves Reflection

Another challenge to the traditional infor-
mation processing view, with its severe con-
straints on cognitive capacity, concerns the
experts’ ability not just to perform effec-
tively but also to be able to reflect on
their thought processes and methods (Glaser
& Chi, 1988, Characteristic 7 (see also
Zimmerman, Chapter 39). Metacognition is
knowledge about one’s own knowledge and
knowledge about one’s own performance
(Flavell, 1979). It is what an individual
knows about his or her own cognitive pro-
cesses. Its relevance to expertise is derived,
in part, from the observation that experts
are graceful in their reasoning process. As
Bartlett (1958) notes, “Experts have all the
time in the world.” There is an element
of unencumbered elegance in expert per-
formance, the underpinnings of which are
based on the efficient management and con-
trol of the adaptive processes. A source for
this might be in abstracted layers of control
and planning.

The traditional (classical) account of
metacognition within the information-
processing model is that abstract descrip-
tions of plans and procedures enable an
individual to operate on or manipulate
problem-solving operations, for example, to
modify and adjust them to context. They
also provide a general organizational struc-
ture that guides and organizes the details
of application, so that a general line of
reasoning can be maintained despite low-
level (detailed) fluctuations and variations.
Novice physics problem solvers, in con-
trast to experts, have no abstract or meta-
level descriptions for their basic problem-
solving operators, which for them are
physics equations (Chi et al., 1981). Rather,
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operators are tied directly to problem details,
show little modifiability, and can only orga-
nize problem-solving activity locally (i.e., at
the level of isolated problem components
present).

In addition to abstraction in control and
planning, there must also be mechanisms for
maintaining information to allow efficient
back-tracking or starting over when lines of
reasoning need to be modified or abandoned.
Largely, the traditional view proposes that
experts deal with the severe working-
memory demands required by backtracking
by minimizing the need for it. For exam-
ple, experts can attempt to withhold deci-
sions until they are sufficiently constrained
to restrict the options. In other cases when
decisions are under-constrained, experts can
rely on abstract solution descriptions and
conditions for solution (constraints) that
both guide the search for solutions and help
eliminate alternatives.

The traditional information procesing
view has difficulties in accounting for the
possibility that experts might be disrupted
or otherwise forced to restart their plan-
ning. More recent research has shown that
experts are far more able to maintain large
amounts of information in working memory.
For example, chess masters are able to play
chess games with a quality that approaches
that of normal chess-playing under blind-
folded conditions in which perceptual access
to chess positions is withheld (for a review
see Ericsson et al., 2000; Ericsson & Kintsch,
2000). Chess masters are able to follow
multiple games when they are presented
move by move and can recall the locations
of all pieces with high levels of accuracy.
Chess masters are also able to recall a series
of different chess positions when they are
briefly presented (5 seconds per position). In
studies of expert physicians (e.g., Feltovich,
Spiro, & Coulson, 1997), it was found that
when experts do not know the correct diag-
nosis for a patient, they often can give a plau-
sible description of the underlying patho-
physiology of a disease; that is, they are able
to reason at levels that are more fundamen-
tal and defensible in terms of the symptoms
presented. When novices fail to reach a diag-

nosis for a patient, their rationale for pos-
sible alternatives is generally incompatible
with the symptoms presented. Experts fail
gracefully; novices crash. Vimla Patel and
her colleagues (Groen & Patel, 1988; Patel
& Groen, 1991) have found that medical
experts are able to explain their diagnoses
by showing how the presented symptoms
are all explained by the proposed integrated
disease state, whereas less advanced medical
students have a more piece-meal represen-
tation that is less well integrated.

Metacognition, then, is important for
people to test their own understanding and
partial solutions to a problem. This kind of
monitoring prevents blind alleys, errors, and
the need for extensive back-up and retrac-
tion, thus ensuring overall progress to a goal.
In addition, these same kinds of monitoring
behaviors are critical throughout the pro-
cess of acquiring knowledge and skills on
which expertise depends. The mental rep-
resentations developed by aspiring experts
have multiple functions. They need to allow
efficient and rapid reactions to critical sit-
uations, and they need to allow modifia-
bility, mechanisms by which a skilled per-
former, for instance, adjusts his performance
to changed weather conditions, such as a
tennis player dealing with rain or wind, or
adjusts to unique characteristics of the place
of performance, such as musicians adjust-
ing their performance to the acoustics of
the music hall. Furthermore, these repre-
sentations need to be amenable to change
so aspiring expert performers can improve
aspects and gradually refine their skills and
their monitoring representations.

Experts, for the most part, work in the
realm of the familiar (familiar for them, not
for people in general) and may often be
able to generate adequate actions by rapid
recognition-based problem solving (Klein,
1998). The same experts are also the indi-
viduals called on to address the subtle,
complicated, and novel problems of their
field. They need to recognize when the task
they are facing is not within their normal,
routine domain of experience and adjust
accordingly (Feltovich et al., 1997); this
is just one of many pertinent aspects of
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metacognitive activity in the function of
expertise.

If the view is maintained that metacog-
nition (in the broadest sense) is enabled
by metacognitive knowledge, and metacog-
nitive knowledge is, in fact, “knowledge,”
should we not expect it to be subject to
the same demands and possess the same
properties as “regular” knowledge, albeit in
a slightly different context? Evidence exists,
for example, that metacognition can be auto-
matic (Reder & Shunn, 1996), thus avoid-
ing Tulving’s (1994) consciousness require-
ment for metacognitive judgement. There
is also indication that metacognitive strate-
gies are explicitly learnable in rather gen-
eral contexts (Kruger & Dunning, 1999), as
well as in special contexts such as read-
ing (Paris & Winograd, 1990) and nurs-
ing (Kuiper & Pesut, 2004). Accordingly,
metacognitive activities, perhaps in a variety
of ways and forms, both explicit and implicit,
afford and support the developmental and
performance dynamics of expertise.

Expertise Is an Adaptation

In this section, we advance an argument
that the development of expertise is largely
a matter of amassing considerable skills,
knowledge, and mechanisms that monitor
and control cognitive processes to perform
a delimited set of tasks efficiently and effec-
tively. Experts restructure, reorganize, and
refine their representation of knowledge and
procedures for efficient application to their
work-a-day environments (See also Erics-
son & Lehmann, 1996). Experts certainly
know more, but they also know differently.
Expertise is appropriately viewed not as
simple (and often short-term) matter of
fact or skill acquisition, but rather as a
complex construct of adaptations of mind
and body, which include substantial self-
monitoring and control mechanisms, to task
environments in service of representative
task goals and activities. As we shall argue,
the nature of the adaptations reflects dif-
ferential demands of the task environment
and mediates the performance evidenced by

highly skilled individuals. Adaptation mat-
ters (Hill and Schneider, Chapter 37).

The classical theory of expertise (Simon
& Chase, 1973) focused on the funda-
mental architectural limits imposed on
human information-processing capacities.
Early investigators assumed that complex
cognition must occur within surprisingly
rigidly constrained parameters. Many of
these limits are not singular, but are con-
sidered collectively as a statement of associ-
ated (related) constraints. Furthermore, the
architecture underlying these constraints is
not specified, other than the fact that it
is physical. Thus, the constraints of the
architecture could be realized as a symbol
system (e.g., Newell & Simon, 1976), per-
haps grounded in modalities (Barsalou, 1999;
Barsalou et al., 2003), or as a dynamic phase
space (e.g., van Gelder & Port, 1995).

In particular, under the traditional theme,
three specific reasoning limits are important
to explaining performance of typical novices
on traditional laboratory tasks (e.g., Prietula
& Simon, 1980¢). First, there is a limit of aiten-
tion (Shipp, 2004). We can focus on solving
only one problem (or making only one deci-
sion) at a time when performing an unfa-
miliar task. However, we sometimes share
our attentional resources by shifting rapidly
from thinking about a given task to another
different task. In addition, perceptual limits
on what can be detected with the eye (and
the eye-brain) exist, situating the percep-
tion in scale bands of size (of objects), time
(speed of movement), distance, and spec-
tra. Our perceptual and attention resources
have evolved to handle a region of time, a
region of space, a region of distance, and a
region of spectra. We actin, and react with, a
highly constrained perceptual environment,
balancing attention and awareness (Lamme,
2003).

Related to this single-mindedness is a
limit of working memory. There is a dif-
ference between long-term memory, our
large, permanent repository for knowl-
edge and working memory, which is much
smaller in capacity and restricted to hold-
ing information about the particular task at
hand, involving multiple components that
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mediate between long-term memory and
the environment (Baddeley, 2000, 2002).
When focusing attention on making a par-
ticular decision or solving a particular prob-
lem, three types of events occur that
are critical for effective reasoning: (1) we
seek (and perceive) data from the envi-
ronment, (2) we bring relevant knowledge
to bear from our long-term memory to
working memory and, by reviewing the
data in the presence of relevant knowledge
retrieved from long-term memory, (3) we
draw inferences about what is going on —
which may lead to seeking more data and
activating more knowledge.

Finally, there is a limit of long-term mem-
ory access. To what extent we truly forget
things is uncertain, so there may not actually
be an arbitrary size constraint on this aspect
of our long-term memory. That, however, is
not the issue. What is certain is that we lose
access to (or the power to evoke) the knowl-
edge stored. A typical demonstration of this
is the “tip of the tongue” phenomenon —
in which you know that you know some-
thing, but cannot retrieve it (Brown 1991,
Brown & McNeill 1966). Therefore, even
though we may scan the right data in an
analysis, there is no guarantee that we will
be able to trigger the appropriate knowledge
in long-term memory to allow us to make
correct inferences from those data. In prac-
tice, a large part of expert problem solving is
being able to access relevant knowledge, at
the right time, for use in working memory.

This traditional approach to expertise was
founded on the powerful theoretic assump-
tion that experts’ cognitive processes, such as
generating, representing, and using knowl-
edge, had to conform to these severe lim-
its. This theory proposed many mecha-
nisms by which experts would be able to
functionally adapt to these constraints to
produce superior performance. The expert
chunking mechanism, for example, permits
a vocabulary that is much more robust
and complex than the novice can invoke.
Although both the expert and the novice
have the same working-memory constraints,
the expert sees the world in larger and
more diverse units. In effect, chunking, per-

mits expanding the functional size of work-
ing memory and increasing the efficiency of
search. This phenomenon has been experi-
mentally demonstrated across a remarkably
wide variety of domains.

The role and function of automaticity
within expertise is important in this regard
also. Automaticity seems to be entwined
with functional organization, chunking, and
conditions of application. They work in con-
cert to adapt to the demands of the task,
under the constraints of both the task and
their own capabilities to make appropriate
use of our memory. Automaticity, then, is
intricately bound with the overall adaptation
of the system through knowledge reorgani-
zation and refinement.

The general argument is that expert
knowledge structures and procedures are
reorganized in directions that enable effec-
tive application to task demands of a working
environment. As we have discussed, most
of these changes are adaptations that enable
utilization of large amounts of information
in the context of limited internal-processing
resources (in particular those imposed by
the small capacity of short-term or work-
ing memory). Grouping or chunking on
information structures and procedure com-
ponents functionally increases the size of
working memory and its efficiency. More
information can be considered for each
“unit” in working memory. Expert selec-
tivity, discrimination, and abstraction (dis-
cussed earlier) insure that only the most use-
ful information is thrown into competition
for resources. Automaticity is a means of
restructuring some procedures so that work-
ing memory is largely circumvented, free-
ing resources for other cognitive chores. It
is a tension between high information load
and limited internal resources that encour-
ages the development of strategies for the
efficient use of knowledge and processing.

This pioneering theory of expertise
(Simon & Chase, 1973) has been and remains
very influential and has been extended
with additional mechanisms to explain
experts’ greatly expanded working memory
(Gobet & Simon, 1996; Richman, Gobet,
Staszewski, & Simon, 1996). At the same
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time there have been many arguments raised
against the claims that the computational
architecture remains fixed and thus presents
an invariant constraint on skilled and expert
processing.

One of the most general criticisms is
that the laboratory — produced empirical
evidence for capacity constraints of atten-
tion and STM are based on an operational
definition of chunks in terms of indepen-
dent pieces of information, no matter how
small or large the individual chunks (see
Cowan, 2001, and Ericsson & Kirk, 2001).
It is relatively easy to design experimen-
tal materials for memory experiments that
are made of independent pieces and mea-
sure experts’ and novices’ memory in terms
of chunks. However, when one analyzes
the information processed by experts when
they perform representative tasks in their
domain of expertise, then all the heeded
and relevant information has relations to the
task and other pieces of information. If the
encountered information can be encoded
and integrated within a model of the cur-
rent context, then how many independent
chunks are stored or maintained in atten-
tion and working memory? Similarly, when
experts encounter representative tasks sit-
uations where beginners perceive several
independent tasks, the aspiring experts are
able to develop skills and encodings that
allow them to integrate the different tasks
into a more general task with more diver-
sified demands. More recent research has
shown how in laboratory studies, partici-
pants performing dual tasks that are believed
to contain immutable bottlenecks of pro-
cessing can, after training, perform them
without any observable costs of the dual task
(Meyer & Kieras, 1997; Schumacher et al.,
2001, but see Proctor & Vu, Chapter 15, for
an alternative account). If the definition of
chunks and tasks requires independence for
imposing limits on information processing,
then it seems that the acquisition of exper-
tise entails developing integrated represen-
tations of knowledge and coordination of
initially separate tasks that make the funda-
mental information-processing limits inap-
plicable or substantially attenuated.

The second general criticism of the tra-
ditional theory of expertise comes from a
rejection of the premise that expertise is
an extension of the processes observed in
everyday skill acquisition (Fitts & Posner,
1967). According to this model, the acqui-
sition of skill proceeds in stages, and
during the first stage people acquire a
cognitive representation of the task and
how to react in typical situations so they
can avoid gross errors. During the subse-
quent stages, the performance of sequences
of actions becomes smoother and more
efficient. In the final stage, people are
able to perform with a minimal amount
of effort, and performance runs essen-
tially automatically without active cogni-
tive control. In an edited book on gen-
eral theories of expertise (Ericsson & Smith,
1991a), several researchers raised concerns
about explaining expertise as an extension
of this general model (Ericsson & Smith,
1991b; Holyoak, 1991; and Salthouse, 1991).
Ericsson and Smith (1991b) found evidence
that experts maintain their ability to con-
trol their performance and are able to give
detailed accounts of their thought processes
that can be validated against other observ-
able performance and process data. Ericsson
and Smith reviewed evidence that complex
cognitive representations mediate the per-
formance and continued learning by experts,
which has been confirmed by subsequent
reviews (Ericsson, 1996b, 2003, Chapter 13).

The third and final type of criticism comes
from the emerging evidence that extended
focused practice has profound effects on,
and can influence virtually every aspect of,
the human body, such as muscles, nerve
systems, heart and circulatory system, and
the brain. Several chapters in this hand-
book review the structural changes result-
ing from practice, such as Butterworth,
Chapter 32, on mathematical calculation;
Ericsson, Chapter 38; Lehmann and Gruber,
Chapter 26, on music performance; Proctor
and Vu, Chapter 15, on adaptations in skill
acquisition; and Hill and Schneider, Chapter
37, with an overview of changes in the struc-
ture and function of the brain with extended
practice and the development of expertise.
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Simple Experience Is Not Sufficient
for the Development of Expertise

Most everyday skills are relatively easy to
acquire, at least to an acceptable level.
Adults often learn to drive a car, type,
play chess, ski, and play (bad) golf within
weeks or months. It is usually possible to
explain what an individual needs to know
about a given skill, such as rules and proce-
dures, within a few hours (see also Hoffman
& Lintern, Chapter 12). Once individuals
have learned the underlying structure of the
activity and what aspects they must attend
to, they often focus on attaining a func-
tional level of performance. This is often
attained in less than 50 hours of practice. At
this point, an acceptable standard of perfor-
mance can be generated without much need
for more effortful attention and execution
of the everyday activity has attained many
characteristics of automated performance
(Anderson, 1982, 1987; Fitts & Posner, 1967;
Shiffrin & Schneider, 1977) and requires only
minimal effort.

In their seminal paper, Simon and Chase
(1973) pointed to similarities between the
decade-long mastery of one’s first language
and the need for extended experience to
master complex domains of expertise, such
as chess and sports. They made a strong
argument for a long period of immersion
in active participation in activities in the
domain, making the claim that even the best
chess players needed to spend over ten years
studying chess before winning at the inter-
national level. The necessity for even the
most talented performers to spend ten years
working and practicing was later converted
into an equivalence, namely, that ten years of
experience in a domain made somebody an
expert. However, for chess, tennis, and golf,
everyone knows examples of excited recre-
ational players who regularly engage in play
for years and decades, but who never reach
a very skilled level.

Reviews of the relation between the
amount of experience and the attained
level of performance show consistently that
once an acceptable level is attained, there
are hardly any benefits from the com-
mon kind of additional experience. In fact,

there are many domains where performance
decreases as a function of the number of
years since graduation from the training
institution (Ericsson, Chapter 38).

Several research methods have been
developed to describe the development
paths of expert performers, such as analy-
sis of the historical record of eminent per-
formers (Simonton, Chapter 18), retrospec-
tive interviews (see Sosniak, Chapter 16),
and diary studies of practice (See Deakin,
Coté, & Harvey, Chapter 17). Research with
these methods has shown that additional
experience appears to make performance
less effortful and less demanding, but to
improve performance it is necessary to seek
out practice activities that allow individu-
als to work on improving specific aspects,
with the help of a teacher and in a protected
environment, with opportunities for reflec-
tion, exploration of alternatives, and prob-
lem solving, as well as repetition with infor-
mative feedback.

In this handbook several chapters dis-
cuss the effectiveness of this type of delib-
erate practice in attaining elite and expert
levels of performance (Ericsson, Chap-
ter 38; Zimmerman, Chapter 39), in soft-
ware design (Sonnentag, Niessen, & Volmer,
Chapter 21), in training with simulators
(Ward, Williams, & Hancock , Chapter 14),
in maintaining performance in older experts
(Krampe & Charness, Chapter 40), and in
creative activities (Weisberg, Chapter 42).
Other chapters review evidence on the rela-
tionship between deliberate practice and
the development of expertise in particu-
lar domains, such as professional writing
(Kellogg, Chapter 22), music performance
(Lehmann & Gruber, Chapter 20), sports
(Hodges, Starkesi & MacMohan, Chap-
ter 27), chess (Gobet & Charness, Chap-
ter 30), exceptional memory (Wilding &
Valentine, Chapter 31), and mathematical
calculation (Butterworth, Chapter 32).

Concluding Remarks

The theoretical interest in expertise
and expert performance is based on the
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assumption that there are shared psycho-
logical constraints on the structure and
acquisition of expert performance across
different domains. The theory of Simon and
Chase (1973) proposed that the invariant
limits on information processing and STM
severely constrained how expert skill is
acquired and proposed a theory based on
the accumulation through experience of
increasingly complex chunks and pattern-
action associations. This theory emphasized
the acquired nature of expertise and focused
on the long time required to reach elite
levels and the learning processes sufficient
to gradually accumulate the large body of
requisite patterns and knowledge. This view
of expertise offered the hope that it would
be possible to extract the accumulated
knowledge and rules of experts and then
use this knowledge to more efficiently train
future experts and, thus, reduce the decade
or more of experience and training required
for elite performance. Efforts were made
even to encode the extracted knowledge in
computer models and to build expert sys-
tems that could duplicate the performance
of the experts (Bachanan et al., Chapter 6).

Subsequent research on extended train-
ing revealed that it is possible to acquire skills
that effectively alter or, at least, circumvent
the processing limits of attention and work-
ing memory. Studies of expertise focused
initially on the expert’s representation and
memory for knowledge. As research started
to examine and model experts’ superior per-
formance on representative tasks, it became
clear that their complex representations
and mechanisms that mediate performance
could not be acquired by mere experience
(Ericsson, Chapter 38). Research on what
enabled some individuals to reach expert
performance, rather than mediocre achieve-
ment, revealed that expert and elite per-
formers seek out teachers and engage in spe-
cially designed training activities (deliberate
practice). The future expert performers
need to acquire representations and mech-
anisms that allow them to monitor, control,
and evaluate their own performance, so they
can gradually modify their own mechanisms
while engaging in training tasks that provide
feedback on performance, as well as oppor-

tunities for repetition and gradual refine-
ment.

The discovery of the complex structure of
the mechanisms that execute expert perfor-
mance and mediate its continued improve-
ment has had positive and negative impli-
cations. On the negative side, it has pretty
much dispelled the hope that expert per-
formance can easily be captured and that
the decade-long training to become an
expert can be dramatically reduced. All
the paths to expert performance appear to
require substantial extended effortful prac-
tice. Effortless mastery of expertise, magical
bullets involving training machines, and dra-
matic shortcuts, are just myths. They cannot
explain the acquisition of the mechanisms
and adaptations that mediate skilled and
expert performance. Even more important,
the insufficiency of the traditional school
system is becoming apparent. It is not rea-
sonable to teach students knowledge and
rules about a domain, such as programming,
medicine, and economics, and then expect
them to be able to convert this material
into effective professional skills by additional
experience in the pertinent domain. Schools
need to help students acquire the skills and
mechanisms for basic mastery in the domain,
and then allow them gradually to take over
control of the learning of their professional
skills by designing deliberate practice activi-
ties that produce continued improvement.

On the positive side, the discovery of
effective training methods for acquiring
complex cognitive mechanisms has allowed
investigators to propose types of training
that appear to allow individuals to acquire
levels of performance that were previously
thought to be unobtainable, except for the
elite group of innately talented. The study of
the development of expert performers pro-
vides observable paths for how they modi-
fied or circumvented different types of psy-
chological and physiological constraints. It
should be possible for one type of expert in
one domain, such as surgery, to learn from
how other experts in music or sports, for
instance, have designed successful training
procedures for mastering various aspects of
perceptual-motor procedures, and to learn
the amount of practice needed to reach
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specified levels of mastery. If someone is
interested, for instance, in whether a certain
type of perceptual discrimination can ever
be made reliably, and how much and what
type of training would be required to achieve
this, then one should in the future be able to
turn to a body of knowledge of documented
expert performance. Our vision is that the
study of expert performance will become a
science of learning and of the human adap-
tations that are possible in response to spe-
cialized extended training. At the same time
that our understanding of the real constraints
on acquiring high levels of performance in
any domain becomes clearer, and the simi-
larities of those constraints across many dif-
ferent domains are identified, the study of
the acquisition of expert performance will
offer a microcosm for how various types of
training can improve human performance
and provide insights into the potential for
human achievement.

The study of expert performance is not
concerned only with the ultimate limits of
performance, but also with earlier stages of
development through which every future
performer needs to pass. There is now
research emerging on how future expert per-
formers will acquire initial and intermedi-
ate levels of performance. Attaining these
intermediate levels may be an appropriate
goal for people in general and for systems of
general education (e.g., recreational athletes,
patrons of the arts). However, knowing how
to achieve certain goals is no guarantee that
people will be successful, as we know from
studies of dieting and exercise. On the other
hand, when the goal is truly elite achieve-
ment, the study of expert performance offers
a unique source of data that is likely to help
us understand the necessary factors for suc-
cess, including the social and motivational
factors that push and pull people to per-
severe in the requisite daunting regimes of
training.
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CHAPTER ;5

Educators and Expertise: A Brief History
of Theories and Models

Ray J. Amirault & Robert K. Branson

Introduction

This chapter presents a brief historical
account of educators’ views about the nature
of expertise and the roles experts have
played in educational models to improve
human performance. We provide a listing of
historically relevant educators and a descrip-
tive summary of the various learning theories
and mechanisms advocated as fundamen-
tal components of high skill development.
We also describe some of the methods used
through history by which expertise and
expert performance have been assessed from
an educational standpoint.

In categorizing the historical record to
undertake this task, it is apparent that the
absence of definitions of and the lack of dif-
ferentiation between, terms such as experts,
expertise, and expert performers, particularly
in early and medieval contexts, presents a
challenge to historical synthesis. In many
historical writings, for example, terms such
as “masters,” “teachers,” and “professors” are
commonly used to denote highly skilled
individuals, and any referent to “expertise”
is often general in nature. The empirical

descriptions provided by systematic inves-
tigation into the mechanisms underlying
expertise and expert performance did not
begin to appear in the historical account
until the late nineteenth century, when oper-
ationalized definitions for performance phe-
nomena were first developed and tested by
the pioneering psychologists of that era.

The lack of empirical specificity in the
earlier record does not preclude, however,
the review and synthesis of either the role
experts have played in past educational
efforts or the historically prescribed tech-
niques for the development of highly skilled
performance. Rather, it requires that the
historical investigator become attuned to
terms, phrases, and descriptions that align
with what today’s theorists and practi-
tioners might more precisely refer to as
either “expertise” or “expert performance.”
It requires that the reader, too, be able to
consider descriptions of past situations and
individuals and recognize common threads
in the historical record as it relates to all
types and views of skills development.

As we shall see, the salient character-
istic of the historical record over some
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two and a half millennia from Socrates
(ca. 400 BC) to Gagné (ca. 1970 AD) is
an increasingly constrained view toward the
study and development of expertise. The earli-
est recorded educators, including Plato and
Socrates, often viewed expertise in what can
be described as a “whole man” approach, a
holistic view that included aspects of knowl-
edge, skills, and morality to achieve “virtue”
in the learner. Medieval European educa-
tors, describing new educational programs
such as the trivium and the quadrivium, and
implementing those paradigms within novel
institutions such as the cathedral schools
and the wuniversity, constrained the focus
of skills development to more specialized
areas, including geometry and the Latin
language, resulting in greater codification
of educational systems and their attendant
instructional techniques. In the most recent
period, twentieth-century educational psy-
chologists, working in scientifically based
learning paradigms, further constrained the
focus of skills development and expertise,
specifying detailed and empirically based
models for the acquisition of the highest
levels of skill within highly specific domain
areas (e.g., concert violin performance, pro-
fessional golfing, and tournament-level chess
competition). This trend, broad and imper-
fect as it may be, will nevertheless serve
nicely to trace the general outlines of our
history.

It is beneficial at the outset of our review
to make note of some key historical trends
that will be presented in this chapter and
that have impacted educators’ views of
expertise throughout the centuries. Among
these, we will see

1. The progression from largely individual-
ized instruction in the ancient context to
mass education in later periods (finding
culmination in the mass production edu-
cational techniques of the nineteenth and
twentieth centuries),

2. The progression of a model of education
for the few in ancient times to education
for the many after the Industrial Revolu-
tion (a function of the decreasing cost of
educating a learner via mass production
techniques),

3. The changing role of the instructor, jux-
taposing at various points in history
between subject matter expert and expert in
educational techniques (reflecting current
views on how to best achieve learning in
students), and

4. A shift in skills assessment from informal
and oral assessment in the ancient context
to formal, objective, and measurable assess-
ment in the Twentieth century (reflecting
the increasing desire to objectively mea-
sure expertise).

These trends, all of which can be seen in
“seed” form in the ancient context, laid the
foundation for, and sometimes the bound-
aries circumscribing, later attempts to study
the nature and development of highly skilled
individuals.

We commence our review by looking first
at the ancient views of skill building and
expertise. We then move on to examine
the evolution of these views through the
Early and High Middle Ages. We then exam-
ine some of the modern salient influential
theories of learning and skills building that
affect theories of expertise, culminating with
the most recent attempt to quantify and
objectively measure skills in specific domain
areas, Ericsson’s expert performance model
(Ericsson, 1996; Chapter 38).

The Ancient Context

Education as a discipline has never suffered
a shortage of divergent views, and it comes
as little surprise that we immediately wit-
ness in the ancient period an early demarca-
tion between two positions on its purpose:
one that focused on the holistic develop-
ment of the individual, and one that focused
on applied skills building. These two early
philosophies of education played a direct
role in the manner in which expertise was
defined and measured. Regardless of the
position, however, the assumption was that
the instructor should be an expert in the area
in which he taught. This placed the teacher
at the focal point of all education, with
students building expertise via transmission
from the expert, the instructor himself.
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Socrates, Plato, and the Sophists

Socrates (469—399 BC), one of history’s ear-
liest educators, was born in Athens of a
stonemason, but grew to become one of
the most influential educators of his time.
His student, Plato (428—347 BC), was the
recorder of Socrates’ words and shared many
of Socrates’ philosophical positions. Much of
what we know about Socrates’ spoken words
comes from the Platonic writings. Plato has
been often cited as producing the most long-
lived and influential views impacting west-
ern education, and his beliefs are still refer
enced and debated today.

Socrates did not promote a formalized
educational system consisting of schools that
delivered and assessed learning outcomes;
rather, he viewed education as a process
of developing the inner state of individu-
als through dialogue and conversation (Jeffs,
2003). Now referred to as the Socratic
method, the teacher employing this method
would not transmit knowledge or practical
skills (techne), but would engage the stu-
dent in a dialogical process that brought
out knowledge believed to be innate within
the student (Gardner, 1987). Instruction in
the Socratic context, therefore, was con-
ducted by means of interactive questioning
and dialog, without concern for fixed learn-
ing objectives, and with the goal of devel-
oping “virtue” and achieving truth (Rowe,
2001). Socrates similarly assessed his stu-
dents via informal, dialectic questioning, his
quest always to find some person who knew
more than he (Rowe, 2001).

Plato, generally sharing Socratic views,
had some specific recommendations con-
cerning the education of younger learners,
which can be found in his classic work,
The Republic. For example, Plato states that
future Guardians of the State should pur-
sue math-related studies for a period of ten
years before advancement to subjects such as
rhetoric or philosophy (Cooper, 2001). Plato
also emphasized the importance of abstract
disciplines, such as philosophy and mathe-
matics, but also believed that only a very
few individuals possessed the “natural abil-
ities” required for pursuit of such subjects
(Cooper, 2001). Thus, we witness in Plato

an early belief in the presence of natural
ability based on some form of genetic
endowment, a prototypical concept fore-
shadowing all the way to Sir Francis Galton’s
nineteenth-century attempts to measure
a generalized, inheritable intelligent quo-
tient, g (Galton, in Ericsson, 2004; Horn &
Masunaga, Chapter 34).

Socrates and Plato did not seem strongly
concerned with the development of applied
skills and actually seemed to demonstrate
an aversion to practical skills training when
devoid of what they viewed as the deeper
meanings of education (Johnson, 198). Fur-
ther, neither viewed education’s primary
role as the transmission of information to
students: education was viewed as inherently
valuable as an intellectual exploration of the
soul. This position therefore provided a defi-
nition of expertise as a general set of inner eth-
ical and knowledge-based traits that was infor-
mally and orally assessed by the instructor.

In notable opposition to the “whole man”
educational approach advocated by Plato
and Socrates were the Sophists. The name
“Sophist” itself implies the orientation: the
Greek word sophia denotes skill at an applied
craft (Johnson, 1998), and Sophist educa-
tors focused on the development of spe-
cific applied skills for individuals studying to
become lawyers or orators (Elias, 1995).

Much of what we know about the
Sophists anticipates today’s professional
or vocational training movement. Sophists
were freelance teachers who charged a fee
for their services and were generally in com-
petition with one another for teaching posi-
tions (Saettler, 1968). Sophists taught arete,
a skill at a particular job, using a carefully
prepared lecture/tutorial approach in what
could be conceived as an early attempt at
mass instruction (Johnson, 1998). Sophist
instructional methodologies were system-
atic, objective in nature, and made use of
student feedback (Saettler, 1968). It was the
applied skills-building aspect of Sophism
that Plato rejected, accusing the Sophists of
turning education into “a marketable bag of
tricks” (Johnson, 1998).

Sophists would likely have defined exper-
tise as the presence of highly developed and
comprehensive rhetorical and applied skills
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that spanned the knowledge base of the era,
a definition quite distinct from the notions
of Socrates or Plato. Central to Sophism
was the belief that there was a single base
skill — rhetoric — that once learned could be
transferred to any subject (Johnson, 1998).
Rhetoric therefore proved to be the chief
subject of Sophist instruction, the educa-
tional goal being the development of what
today we might call a polymath, an individ-
ual who had mastered many subjects and
whose knowledge was “complete” (Saettler,
1968). Sophist methods attempted to trans-
fer rhetorical skill into all types of sub-
ject domains, including geography, logic, his-
tory, and music, through the acquisition
of cognitive rules for each domain (Saet-
tler, 1968). The systematic nature of sophist
instructional techniques ensured that stu-
dents clearly understood learning objec-
tives and assisted learners in gauging their
own progress in achieving those objec-
tives (Saettler, 1968). This approach, then,
moved educational assessment slightly more
towards an objective standard than the
informal, oral techniques of Socrates and
Plato.

Summary: Expertise in the Ancient Period

We witness in the ancient context two
unfolding views toward expertise, each
vested in a philosophical view of the nature
and purpose of education. If one subscribed
to the notion that education held innate
worth and that its goal was the develop-
ment of the “inner man” (as did Plato and
Socrates), then “expertise” could be seen
as the attainment of a general set of inner
traits that made one wise, virtuous, and in
harmony with truth. If one subscribed to
the value of applied skills development (as
did the Sophists), then “expertise” could be
viewed as the attainment of a set of compre-
hensive practical abilities. Regardless of the
position, the emphasis on rhetorical skills
and the individualized nature of instruction
in this period proscribed a generally informal
assessment of expertise based on the judg-
ment of the teacher, not strictly on objec-
tively defined performance measures.

The Medieval Context

Medieval Educational Structures

Much of the knowledge from the ancient
school was carried through to the medieval
context, but medieval institutions increas-
ingly codified and delineated that knowl-
edge. Subject matter was also acquiring an
increasingly practical application that would
serve the medieval church: geometry was
required to design new church buildings,
astronomy was required for calculating the
dates for special observances, and Latin was
required for conducting religious services
and interpreting ancient texts (Contreni,
1989). Latin was the central focus of nearly
all education, and mastery of the language
was required in order for one to be deemed
“educated.”

A key event in the development of educa-
tional practice in medieval Europe occurred
with the ascent of the Frank leader Charle-
magne (742-814 AD), who established the
Frankish Empire, later to evolve into the
Holy Roman Empire, across a large por-
tion of Europe. Charlemagne had a deep
and abiding interest in education, imple-
menting educational reform in law through
a device called the capitularies, a collec-
tion of civil statues (Cross & Livingstone,
1997). Charlemagne’s motivation for edu-
cation centered around two concerns: he
felt an educated populace was necessary for
the long-term well-being of the empire, but
also understood that the medieval church
required highly trained individuals to con-
duct all facets of the institution’s business,
both secular and religious (LeGoff, 2000).
Charlemagne set in motion a movement
toward formalized education that was to
shape education in western Europe for cen-
turies (Rowland-Entwistle & Cooke, 1995).

The University

The emphasis Charlemagne placed on for-
malized education in continental Europe
was both long-lived and influential. By
the thirteenth century, the university had
become a focal point for intellectual devel-
opment, and with it came a systematized
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curriculum called the seven liberal arts
(Cross & Livingstone, 1997). The curricu-
lum was divided into an initial four-to-seven
year period of study in Latin, rhetoric, and
logic called the trivium (leading to the bac-
calaureate), followed by a second period of
advanced studies in arithmetic, astronomy,
geometry, and music called the quadrivium
(leading to the masters or doctorate). It
was by progression through these curricula
that students acquired expertise and status
as a master. University courses were deliv-
ered in traditional didactic manner, with the
instructor presenting material that the stu-
dents would assimilate, grammatically ana-
lyze, and restate to the instructor via written
and oral dialogue (Contreni, 1989).

The increased formalization and struc-
ture of the medieval university amplified the
performance demands placed on students.
Students — who sat on the floor while tak-
ing notes from the master’s lectures — were
forced to develop a battery of mnemonic
devices to remember lecture material, much
of which was extemporaneously delivered
because of prohibitions against a master
reading from notes (Durant, 1950). Fur-
ther adding to the demand placed on stu-
dents was the fact that many students could
not afford textbooks. Still handmade at this
point, books were rare and costly artifacts,
making oral lectures the primary source of
information (Durant, 1950).

Formalization of medieval educational
structures also affected the amount of time
required to achieve a degree. It could, for
example, take up to 16 years to achieve
the doctorate in theology or philosophy at
the University of Paris, and as little as five
percent of students ever reached this level
(Cantor, 2004). Most students left the sys-
tem in far shorter time (usually five to ten
years), taking lesser degrees that allowed
them to function successfully as cathedral
canons (Cantor, 2004).

The assessment techniques applied to
medieval university students is described
in detail in volume five of Durant’s clas-
sic 11-volume text, The Story of Civilization
(1950). Durant’s history reveals that no for-
malized examinations took place during a

medieval student’s initial course of study.
Instead, students engaged in oral discussion
and debate with and between themselves
and the master for purposes of improving
intellectual and rhetorical skills, as well as
weeding out students. After a period of some
five years, a committee formed by the uni-
versity presented the student with a prelim-
inary examination consisting of two parts:
a series of private questions (responsio) fol-
lowed by a public dispute (determinatio). If
the student successfully defended both parts
of the exam, he was awarded baccalarii sta-
tus and was able to function with a mas-
ter as an assistant teacher. Should a bac-
calarii decide to continue studies under the
guidance of a master, the would-be doc-
toral candidate would, after many years of
additional study, be presented an exam-
ination by the chancellor of the univer-
sity. Completion of this examination, which
included reports on the “moral character”
of the student, led to the awarding of the
doctoral degree. A newly awarded master
would then give his inaugural lecture (incep-
tio), which was also called “commence-
ment” at Cambridge University (Durant,
1950).

Expertise and specialization among
teaching faulty was also a salient element
of the university system. The abbey of St-
Victor of Paris, for example, was well known
for a series of highly acclaimed teaching
faculty, and John of Salisbury, teaching at
the cathedral school of Chartres, was held in
esteem for his knowledge of political theory
(Jordan, 2003). This trend evolved to a
point where institutions themselves devel-
oped reputations for excellence in specific
areas based on the faculty: among many
others, Bologna for law, Paris for theology,
and Cambridge for natural philosophy and
theology (Jordan, 2003). The expertise
represented by such institutions drew a
steadily increasing number of students,
many having costs defrayed by scholarships
(Durant, 1950). This trend reflected both
the extent to which expertise was valued
within the education community, as well
as the increasing domain specialization
of instructors, whose domain knowledge
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was regarded as a critical component for
mastering any topic.

Medieval Instructional Techniques

The medieval period saw the birth of a num-
ber of teaching techniques that were applied
at the various universities, cathedral schools,
and monasteries throughout Europe. It was
through these techniques that learners were
expected to master grammar, rhetoric, and
language, all of which were the bedrock
requirement for mastery of higher educa-
tion, and reflected the continuing impor-
tance of communication skills carried over
from the ancient context.

Typical of such techniques was Scholasti-
cism, an eleventh-century innovation greatly
influenced by the questioning techniques
of Abelard (1079-1142 AD) and later fully
described by Aquinas (1225-1274 AD).
Scholasticism was a syllogistic learning and
teaching technique that investigated appar-
ent contradictions in ancient texts (Cross &
Livingstone, 1997). Assessment under the
Scholastic method was conducted by the
master’s review of student responses to such
apparently contradictory source material:
the student was required to apply the rules of
logic in an exacting technique, with the goal
of being able either to defend the “contradic-
tory” statements as not actually containing
contradiction, or to otherwise craft a con-
vincing statement positing the human inabil-
ity to resolve the contradiction (i.e., the
“contradiction” was a divine truth). These
interactions followed a set ritual (scholas-
tica disputatio), whereby a master’s question
required from the student first a negative
answer and defense, followed by a positive
answer and defense, and finally a reasoned
set of responses to any objections' (Durant,
1950). Thus, it can be seen that the ancient
topics of rhetoric and oratory still held pow-
erful sway in the medieval curriculum.

There were also other instructional
approaches employed in the medieval
university: Comenius (1592-1670 AD), for
example, taught by using visuals embed-
ded within instructional texts, such as his
Orbus Pictus (Saettler, 1968), and Isidore of

Seville (560-636 AD) applied grammatical
rules to a wide variety of fields of study in
an attempt to view all knowledge through
the lens of language and its structure (Con-
treni, 1989). But the techniques demon-
strate how an expert teacher, with highly-
developed domain knowledge, sought to
inculcate that knowledge in students and,
over time, develop highly proficient indi-
viduals who would someday take over the
teaching task.

The Craft Guilds

A fascinating parallel to the formalized aca-
demic systems found in medieval schools
and universities were the craft guilds (Icher,
1998) that targeted development of the high-
est levels of expertise in their members.
Begun around the tenth century, the craft
guilds represented an applied-skills move-
ment that eventually covered a wide range
of building and manufacturing trades. The
example of the European cathedral builders
reveals such trades as masons, stone cut-
ters, carpenters, plasterers, and roofers (Icher,
1998). By the thirteenth century, a total of
120 craft corporations were catalogued with
over 5,000 members. This number swelled
to 70,000 members in 1650, consisting of
20,000 masters and the rest apprentices and
journeyman (Cole, 19909).

In contrast to the general intellectually
oriented emphasis of the medieval univer-
sity, craftsmen progressed through a hands-
on apprenticeship of some seven-to-ten
years within a specialized area. Craftsmen
were defined, even within groups, as “supe-
rior” and “less important” based on abilities
(Icher, 1998). The craft guilds movement
emphasized exacting performance within
each discipline, all under the watchful eyes
of a hierarchy of fellow artisans who both
formally and informally critiqued ongoing
work. The rule for being a master crafts-
man was “Whosoever wishes to practice the
craft as master, must know how to do it in all
points, by himself, without advice or aid from
another, and he must therefore be examined by
the wards of the craft’ (Cole, p. 50). In many
respects, because of the emphasis placed
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on the development of specific skills, the
extended period of training, and the repro-
ducibility of performance, an argument can
be made that these medieval craftsmen con-
formed loosely to our modern understanding
of expert performance (cf. Ericsson & Smith,
1991; Ericsson, Chapter 38).

Summary: Expertise in the Middle Ages

Three primary factors characterized the
development of expertise in the medieval
period, all continuing to proffer the notion of
teacher as expert. First, the formalization and
systemization of educational structures such
as the university and cathedral schools helped
to strengthen and codify knowledge that
could then be studied and mastered by topic.
Second, the implementation of new instruc-
tional techniques, typified by the Scholastic
method, moved educators away from ad hoc
instruction into analyzing learning processes
in a more systematic manner and estab-
lishing sequences of instruction to improve
learning outcomes. Finally, the appearance
of the craft guilds established a skills-based,
performance-assessed, and domain-specific
learning community that mastered the arti-
san trades under the direct guidance and
supervision of experts.

Medieval assessment continued to make
use of informal, rhetorically based tech-
niques. Although medieval educational str-
uctures increasingly moved assessment
toward formalization, informal assessment
nevertheless continued to prevail. The craft
guilds were the exception, where skills were
developed and assessed to a high level of
specificity and were routinely measured and
formally assessed by the guild masters.

The Modern Context

Impact of Modernization on Education

One of the most significant historical events
to impact education was the Industrial Rev-
olution, a period commencing in Britain in
the eighteenth century as a result of a vari-
ety of economic and technological develop-

ments (Roberts, 1997). European transfor-
mation from an agrarian society into towns
with seemingly innumerable factories and
mills placed new demands on existing edu-
cational systems. Prior to this, education
was restricted to privileged groups, including
males, religious clerics, nobility, and those
with the means to afford it. Even the craft
guilds often charged large sums of money
for admittance, restricting membership to
a select pool of potential apprentices. This
left education at a fundamental disconnect
with the common classes, leaving them to
learn what they could outside formal sys-
tems (Contreni, 1989).

The role of privilege and gender as it per-
tained to education greatly diminished with
the Industrial Revolution. As a country’s
economic situation improved because of the
new industries, the demand for supplying a
continual stream of skilled industry work-
ers forced educational structures to evolve in
order to keep pace with that demand. This
contributed in part to the ever-increasing
enrollment rates that were seen in many
European schools, eventually resulting in
essentially universal enrollment in portions
of Europe (Craig, 1981). In some countries,
free, state-based education became compul-
sory (Roberts, 1997), and basic primary edu-
cation became available to both girls and
boys (Davies, 1990).

The postindustrial educational model
therefore represents a significant shift in the
development of human skill. In ancient
times, learners spent time with the instruc-
tor on an individual basis, engaging in inter-
active dialogue and questioning. Later, in
medieval times, although educational for-
malization was increasingly present, stu-
dents still moved to the location of their
master of choice, working with the master
to achieve educational goals.

After the industrial revolution, however,
mass-production techniques from industry
were applied to the educational world,
employing large instructional classes and
many teachers. In such an environment, the
upper limit construct, the upper performance
bounding of such a massed, classroom-based
learning environment, began to come into
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play (cf Branson, 1987). Learners were now
taught basic skills such as reading, writ-
ing, and basic math, and the goal was the
development of competent industry workers
(Madsen, 1969). Removing learners even fur-
ther from the one-on-one and personalized
instruction of the ancient context, and no
longer focused on the development of exper-
tise in any one particular area, this “indus-
trial” education model can be seen in many
settings until the current day (e.g., in liberal
arts vs. engineering education).

Further, the notion of the development
of a true polymath, an educational goal
tracing its roots all the way back to the
ancient context (and later revived in the
Renaissance in the concept of a “Renaissance
man”), became increasingly disregarded in
the Industrial context. Indeed, the move
toward industrialization was not the only
factor at play: as the amount of avail-
able knowledge exploded with the Renais-
sance, it became increasingly apparent that
no one person would ever master in toto
such a collection of knowledge. Specializa-
tion by field was now becoming the dominant
paradigm when moving beyond the basic
skills demanded by industry. Van Doren
(1991) notes that

The failure of the Renaissance to produce
successful “Renaissance men” did not go
unnoticed. If such men as Leonardo, Pico,
Bacon, and many others almost as famous
could not succeed in their presumed dream
of knowing all there was to know about
everything, then lesser men should not pre-
sume to try. Thealternative became self-
evident: achieve expertise in one field
while others attained expertise in theirs.

(Van Doren, 1991) (emphasis added)

Thus, the goal of developing expertise in
all fields had been fully abandoned by the
time of the Industrial Revolution. If any per-
son was to become an expert, that recogni-
tion was likely to be gained in a single field
or domain of study.* (See Feltovich et al.,
Chapter 4, for a comparision of this trend
from generality to specificity in the concept
of expertise.)

Education Becomes a “Science”

By the late nineteenth century, the subject of
“Education” became institutionalized in the
universities as a distinct field, no longer the
forte of the various specialized disciplines.
Universities at this point were transitioning
into research institutions, and calls for the
application of a science-based approach to
education were becoming increasingly com-
mon (Lagemann, 2000). Harvard professor
Josiah Royce wrote his influential piece, Is
There a Science of Education?, in which he
said there was “no universally valid science of
pedagogy” (Royce, in Lagemann, p. ix). John
Dewey (1859-1952) was another of the early
players in the attempt to apply science to
education, writing a 1929 work, The Sources
of a Science of Education (Lagemann, 2000).
Much of the subsequent work in education
was spearheaded by psychologists who had
recently undergone the division of their field
from philosophy, and the discipline of edu-
cational psychology soon came into existence.
Carrying on from the pioneering work of
the Wundt laboratory at Leipzig in 1879 and
subsequent work by Ebbinghaus and others,
learning was to be scientifically and empirically
investigated as a distinct psychological process
(Boring, 1950).

The impact of this extraordinary shift in
approach can hardly be overstated: every
aspect of the learning process, includ-
ing learner characteristics, instructional
methodologies, psychological processes, and
even physiological factors were now to be
scrutinized, quantified, and aggregated into
what would eventually become learning
theories. This approach was also highly
significant in that it threatened to remove
teaching from the exclusive control of
domain experts: the field of education
would now seek to develop generalized
scientific approaches for teaching and
learning any subject, and the joint efforts
of educators and psychologists would
develop these approaches (Lagemann,
2000).

These investigations would play a domi-
nant role in the manner in which researchers
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viewed expertise. If a science-based and
empirically validated theory of learning
could describe the psychological process of
learning, then the development of exper-
tise, that is, learning taken to its ultimate
realization, would similarly be described. It
was often assumed that expertise was devel-
oped by successive application of the pre-
scriptive methods built from each theory
until the specified performance level was
achieved. Some of the more prominent of
these theories and models are now briefly
presented.

Programmed Instruction
and Teaching Machines

Programmed instruction was one of the
first technologies of instruction that used
a psychological theory (i.e., behaviorism)
as a rationale for its technique (Saettler,
1968; Feltovich et al., Chapter 4). Sidney L.
Pressey, a psychologist at Ohio State Univer-
sity, developed the technique in the 19205,
though presaged much earlier by Comenius,
Montessori, and others. Skinner, seeing the
educational potential of the approach, pop-
ularized the technique a few decades later,
even using the method to teach his own
classes at Harvard University in the 1950s
(Saettler, 1968).

The technique used a mechanical or
paper-based device, called a teaching
machine, to control the presentation of a
programmed sequence of highly structured
questions to the learner. The learner’s
understanding was shaped by providing
immediate feedback as the learner answered
questions embedded in the material,
branching to appropriate places based
on learner response (Garner, 1966). This
allowed students to perform self-assessment
through the instructional sequence, branch-
ing either forward or backward in the
sequence depending on the correctness of
particular responses. The methodology was
found to be highly effective in a number
of cases, prompting a large programmed
instruction movement in the United States

during the 1960s, including use in the U.S.
military (Gardner, 1987).

World War II, the Military, and

Performance

World War II, much like the Indus-
trial Revolution, brought new performance
demands to the educational establishment.
The requirements for consistent and com-
petent performance under battle conditions
required that new theories and techniques
be applied within military educational struc-
tures. In reaction to these demands, gen-
eral systems theory was applied to a vari-
ety of practical military problems. Because
many psychologists were involved in mili-
tary training and selection programs, these
individuals began to adopt systems think-
ing in approaching military-related human
resources issues.

Robert B. Miller (1962) first formal-
ized the relationships among various psy-
chological approaches to create expertise
in military jobs. Both the Army’s Human
Resources Research Organization (Hum-
RRO) and the Air Force Human Resources
Laboratory were major contributors to this
effort (Ramsberger, 2001). Much of the the-
ory surrounding this history is captured in
Gagné’s (1966) Psychological Principles in
System Development, which contains mate-
rial by the leading advocates of performance
development through application of systems
thinking.

In the late 1960s, the Army’s Continental
Army Command (now TRADOCQC) issued
a regulation that set forth the major func-
tions of training design, development, and
implementation (The Systems Engineering
of Training, 1968). Beginning in the early
1970s, the term “systems engineering” was
gradually replaced by instructional systems
development in the training community, and
all branches of the military service formally
adopted that term with the publication of
the Interservice Procedures for Instructional
Systems  Development (Branson, 1978).
Because a substantial number of military
tasks were highly consequential, a demand
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for expertise in a wide variety of jobs was
both desirous and necessary.

Such military-related jobs had histori-
cally been trained through standard “school-
house platform” instruction. The introduc-
tion of increasingly effective simulators and
part-task trainers, coupled with a complete
instructional design process based on sys-
tems theory, made training more efficient
and effective across all jobs.

Fundamental, too, for success in mili-
tary training was the research effort that
supported the development of new prac-
tices and the continuing commitment to
use systems- and evidence-based approaches
to training. Increasingly complex jobs and
missions required increasingly sophisticated
training approaches, and the implemen-
tation of highly capable simulators made
possible the practice necessary for success.
Through the process of distributed interac-
tive simulation, full missions could now be
rehearsed in advance until a criterion perfor-
mance level was met. The capabilities con-
tained in such simulated systems included a
full range of “what-if” scenarios and set the
early stage for the introduction of comput-
erized simulators with real-time, software-
based programming in the later part of
the twentieth century (Ward, Williams, &
Hancock, Chapter 14).

The Rise of Cognitivism

Behaviorism had posited that learners were
essentially blank slates, changed by their
environment and learning through the
mechanisms of stimulus and response. In
this view the learner was a passive recipi-
ent of knowledge, waiting for imprinting of
new learning. Over time, the new stimulus-
response patterns would be strengthened
and become automatic: learning was then
said to have occurred. Expertise could
be viewed as the development of many
automatized stimulus-response patterns fully
imprinted within the learner.

By the mid-twentieth century, however,
a number of theorists were raising questions
about the ability of behaviorism to explain
all learning and psychological processes.

Questions surrounding the ability of learn-
ers to organize information and solve prob-
lems, for example, seemed to be left unad-
dressed by raw behavioral theory (Tuckman,
1996). Thisled to the development of a num-
ber of new learning theories that pointedly
included mental operations as part of the
description of learning. Among these were
the information processing theory of Atkin-
son and Shiffrin (Matlin, 2002) and the cog-
nitive approach of Robert M. Gagné (198¢).

Learning Hierarchies

Robert M. Gagné (1916—2002), a leading
educational psychologist at the University of
California at Berkeley and subsequently at
Florida State University, conducted exten-
sive investigations into the nature of learn-
ing as a psychological process, leading him
to the development of a concept he termed
learning hierarchies. As implied by the name,
a learning hierarchy is a set of specified
abilities having an ordered relationship to
one another, generally depicted in graphi-
cal format (Gagné, 1989). The learning hier-
archy, then, depicts a skill and its com-
ponent subskills requisite for performing
the skill. Gagné simultaneously categorized
skills with regard to their placement within
a learning outcome taxonomy consisting of
psychomotor skills, verbal information, intel-
lectual skills, cognitive strategies, and attitudes
(Gagné, Briggs, & Wager, 1992). The hierar-
chy is often constructed in conjunction with
a task analysis, a detailed specification of
the mental and physical processes involved
in task performance (Smith & Ragan, 19qq);
Schraagen, Chapter 11).

Carroll’'s Model of School Learning

Harvard University professor John B. Car-
roll (1916—2003) in 1963 proposed his model
of school learning (Carroll, 1963). Carroll’s
model, although not a learning theory per se,
nevertheless demonstrated a practical equa-
tion for how individual task mastery is
attained and also challenged traditional
notions of student aptitude (Guskey, 2001).
Carroll’s system used five variables, three
internal to the learner (amount of time
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required for learning the task, ability to
understand instruction, and time willing to
be spent on learning) and two external (time
allowed for learning and quality of instruc-
tion). Carroll combined these five elements
into a ratio that results in the degree of
learning: degree of learning = (time actually
spent on learning) / (time needed for learn-
ing) (Carroll, 1963). Challenging the tradi-
tional notion of student aptitude as ability
(see also Horn & Masunaga, Chapter 34),
Carroll said that aptitude was more accu-
rately a measure of learning rate, or the time
an individual student requires to master a
new learning task. Carroll’s model depicted
acquisition of expertise, therefore, as pri-
marily a function of time: time required for
learning (called aptitude), time willing to be
spent on learning (called perseverance), and
time allowed for learning (called opportu-
nity). Carroll’s work influenced a number of
“individualized” instruction methodologies,
including Individually Prescribed Instruc-
tion (Glaser, 1960), Indiwvidually Guided
Education (Klausmeier, 1971), and others
(Guskey, 2001).

Mastery Learning

One of the key results of Carroll’s model
was the interest it stirred for Benjamin
Bloom (1921-1999) in suggesting methods
to improve school outcomes. Bloom was
an educational research and policy analyst
from the University of Chicago interested in
improving the effectiveness and quality of
educational methods. Bloom believed that
virtually all students could excel and master
most any subject, given the proper learning
conditions (Bloom, 1968). Bloom had pre-
dicted that, given such conditions, go% of
students could perform to levels previously
only reached by the top 10% (Kulik, Kulik,
& Bangert-Drowns, 1990).

Carroll's work stimulated Bloom to
extend the work to encompass a new model
of teaching and learning called mastery learn-
ing. Bloom laid out the theory in his 1976
work, Human Characteristics and School
Learning, in which he theorized that the
combination of cognitive entry behaviors,

affective entry characteristics, and quality of
instruction could account for up to go% of
achievement variation in students (Guskey,
2001). Noting the inadequacies of tradi-
tional instructional methods, Bloom inves-
tigated two types of processes: the processes
involved in pairing students with excel-
lent tutors, and the practices and strate-
gies of academically successful students.
Bloom’s resultant instructional methodol-
ogy included two principal components:
first, feedback, corrective, and enrichment
processes; and second, instructional align-
ment (Guskey, 2001). These were combined
into a self-paced, individualized learning sys-
tem to give each student the specific instruc-
tion and adequate time needed for mas-
tery of the instructional task (Kulik et al.,
1990). Numerous studies have confirmed the
efficacy of the mastery learning model (see
Kulik et al., 1990, for a meta-analysis), and
the technique remains in use today.

The relationship of Bloom’s model to
the development of expertise lies within
the theorized percentage of students master-
ing a topic when using the method: Bloom
claimed that the outcome of such a mastery
approach could alter the “normal” perfor-
mance curve frequently witnessed in edu-
cational settings. Such normal performance
curves, Bloom posited, were actually what
might be witnessed with no instructional
intervention present, and with student apti-
tude alone determining learning outcomes
(Smith & Ragan, 1999). The implication was
that expertise in this model lay well within
the grasp of a majority of students, not sim-
ply a small percentage of those with “natural”
aptitude.

Objectives

In the early 1960s, Mager sought a method
that would enable teachers and trainers
to operationalize their instructional inten-
tions. Mager’s widely read book, Prepar-
ing Objectives for Programmed Instruction
(1962), influenced the systematic design of
instruction probably more than any other
text. Mager intended that all instructors
should state in advance the precise behaviors
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that they intended to cause and then mea-
sure the accomplishment of those behav-
iors with criterion-referenced procedures.
Instructional outcome specifications and
measurement to absolute standards gradu-
ally became the norm for training critical
tasks in a variety of domains.

Learning OQutcomes

In the mid-1960s, Gagné published his mon-
umental work, The Conditions of Learning
(1965), in which he integrated research and
theory to provide a comprehensive approach
to instruction. Although Gagné was princi-
pally focused on the learning of school sub-
jects, his work was widely used in other are-
nas. It was Gagné’s interest in school sub-
jects that led him to conceptualize the con-
struct of the learning hierarchy. He recog-
nized three major relationships between ini-
tial and subsequent learning:

e The learning of A was independent of
the learning of B, and no sequence was
implied,

* The learning of A facilitated the learning
of B, thus suggesting a favored sequence,
and

* The learning of B could not occur unless
A had first been learned, thus requiring a
correct sequence.

These relationships are substantially
incorporated into Gagné’s Nine Events of
Instruction (1965). From the research liter-
ature, Gagné defined five possible learning
outcomes:

* Motor skills encompass the totality of the
perceptual-motor domain.

* Verbal information is declarative knowl-
edge about a domain.

o Intellectual skills are required to apply
principles and rules to a domain.

* Cognitive strategies are higher-order pro-
cesses for learning and problem solving.

* Attitudes are choices that a learner makes
about future behavior.

Designing instruction appropriate for the
domain could facilitate each learning out-

come. Most domains contain multiple out-
comes.

Considering expertise from another per-
spective, one can think of a student being
an expert third-grader. For hierarchically
ordered intellectual skills such as mathe-
matics, learners must achieve behavioral flu-
ency at one level before they can successfully
progress to the next level (Binder & Watkins,
1990). Binder and Watkins argue that behav-
ioral fluency is similar to automaticity and
that the best dependent variables for assess-
ing learning are the response time required
to recall and use any fact or relationship
(e.g., solving equations) and the accuracy of
the response. Thus, those students with the
shortest times and highest accuracy scores
are the experts. Binder and Watkins have
made a strong case that instruction should
be designed to cause behavioral fluency in
all students (Binder & Watkins, 199o).

Constant Time of Exposure Model vs.
Criterion Referenced Instruction

As in the ancient context, the twentieth
century witnessed the development of two
distinct educational philosophies and their
related instructional practices that were in
tension with one another. The vast major-
ity of public schools, universities, and many
military schools applied the traditional con-
stant time of exposure model. The constant-
time model produces learner results that
vary much as the normal curve, establish-
ing the basis for grading students and causing
winners and losers. Because many situations
and occupations require constant, compe-
tent performance, the constant time model
does not meet the requirements for many
learners.

Consistent with the work of Carroll and
Bloom, who demonstrated that providing
different amounts of time to learn pro-
duced a much larger proportion of students
that reached criterion, Glaser and Klaus
(1962) elaborated the practice of criterion
referenced testing. For any level of expertise,
subject matter experts developed criterion per-
formances that could be reliably judged by
those proficient in the domain. Instruction was
designed to accommodate a distribution of
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time-to-completion measures that resem-
bled the normal curve of performance scores
found in traditional settings. The intention
was to identify the level of performance
that was required by the authentic situation
and measure the performance of individuals
compared to the standard or criterion. It was
deemed particularly important to use crite-
rion performances to judge competence in
highly consequential tasks.

In the majority of education and training
environments, the goal is usually to develop
competence in large numbers of people. The
overlap between “competence” and “exper-
tise” might be illustrated by comparing naval
aviators and concert violinists. The Naval
Aviation flight training community strives
to have every cadet become competent at
carrier landings. Thus, each landing must
be made according to defined standards for
approach and touchdown. Each landing is
highly consequential and when done incor-
rectly, the result is immediately and pub-
licly known. For the world-class concert vio-
linist, only a small portion of the audience
would ever know that the performance given
was not up to the violinist’s high expecta-
tions. Rarely would an average performance
be consequential to an expert violinist.

Instructional Systems

A number of the aforementioned theory and
research efforts coalesced with the Instruc-
tional Systems Development (ISD) move-
ment in the late twentieth century. Making
simultaneous use of performance objectives
(Mager), the events of instruction (Gagné),
instruction with feedback (Skinner), criterion-
referenced instruction (Mager), and learn-
ing hierarchies (Bloom, Gagné), the systems
approach to instructional design is a method-
ology rooted in both educational research
and applied experience, whose goal is the
development of effective, quality instruc-
tional materials. The ISD methodology is
differentiated from others in that it applies
basic concepts from systems theory (Katz &
Kahn, 1978) to the design of instruction.
Each stage of the ISD process is viewed
as input to another stage as well as output
from a previous stage, with feedback loops

to allow the process to adjust and improve
(Rothwell & Kazanas, 1992). The result is an
objective, tightly controlled, and research-
grounded process that is easily applied to a
wide variety of learning situations.

Instructional Systems and Experts

A significant characteristic of the ISD
approach relating to expertise is the man-
ner in which it makes use of domain experts.
Because the use of learning hierarchies pred-
icates an understanding of the skills and sub-
skills required for task performance, ISD
employs domain experts as a source of accu-
rate information on how specific tasks should
be conducted. In addition, the use of domain
experts to inform instructional decisions in
the ISD approach means that the desired
outcome for instruction is aligned with
how experts, not novices, perform a task
(Feltovich et al., Chapter 4, “expertise as
goal state for learning”). Although ISD is
frequently used to train novices in a subject
area and the stated goal is often described as
“competency,” ISD’s use of criterion-aligned
performance against an expert standard
implies that the goal is to develop learners
who do not stop at competence, but con-
tinue on the path to expertise. The ISD edu-
cational approach is therefore unique in its
view of experts: domain experts are now seen
as a source of information for informing the
learning process, but not necessarily as design-
ers of instruction.

Curriculum Reform: Using Domain
Experts to Design Instruction

Interestingly, there was a concurrent series
of curriculum reform efforts in the United
States alongside the Instructional Systems
movement that applied an opposite approach
toward the use of experts in education.
The movement included such now-famous
efforts as the “new math,” and encom-
passed a wide variety of disciplines includ-
ing physics, history, and mathematics. This
movement is documented in Lagemann’s An
Illusive Science: The Troubling History of Edu-
cational Research (2000). These curricular
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reforms were aimed at reinfusing “discipline-
based scholarship” into the design of edu-
cational materials in reaction to what was
considered the poor results of “educators,”
who had assumed responsibility for teach-
ing such subjects with the rise of “educa-
tion” as a discipline. The claim was that
domain experts, including physicists, math-
ematicians, and historians, would be able
to bring academic “rigor” to their subjects,
and improve classroom materials. This heav-
ily funded movement lasted more than a
decade, and with the results of the approach
contested from all sides, produced no clear
consensus of its impact (Lagemann, 2000).

Constructivism

As implied by our history, each generation
has found ways to reject prior wisdom and
strike out on a new direction. Psychology
has seen many such excursions in which the
current fad or fashion is considered to be
the truth. There were the structuralists, the
behaviorists, and then the radical behavior-
ists, each group vociferously marking out
intellectual territory. Parallel to these posi-
tions was a generic empirical psychology that
sought to find answers to basic questions
from a theory and research base. This group
included those who sought empirical meth-
ods to improve military training and ways
of increasing performance. In that group can
be found Gagné (1989) and Glaser (1966),
among others.

Many of these viewpoints had their own
research agenda and methods of collecting
data. Few would challenge the empirical
findings of Skinner and his colleagues who
detailed the results of schedules of reinforce-
ment, that were primarily described from
animal research and were demonstrated to
apply in the same manner to rats, pigeons,
and humans. For decades, psychologists have
known that a stimulus event, followed by a
behavior, followed by a consequence would
lead to a change in the probability of that
behavior occurring at the next presentation
of the cue stimulus. Skinner and his stu-
dents and colleagues refined this generaliza-
tion over the years. This school of thought is

now represented by the Society for the Anal-
ysis of Behavior.

Around 1970, cognitive psychologists
began to provide data and theory suggest-
ing that humans were subject to acquiring
behavior that was best explained from an
Information processing perspective. Cogni-
tion was again considered a legitimate source
of data, depending on the experimental
methodology that established it. Sensation
and perception, as well as other functions of
the nervous system, were important areas of
study.

Another approach appeared on the scene
with the advent of constructivism. Beginning
around 1985 — although some would argue
that the date was much earlier — a number
of educational researchers began to elaborate
the tenets of constructivism. Based primarily
on the study of school subjects, as construc-
tivist literature is almost exclusively tied to
the development of learning environments
within school settings (Tobin, 1993), con-
structivists posited that students could learn
only if they effectively mapped new infor-
mation onto prior knowledge and experi-
ence. Stated another way, learners were said
to construct their own knowledge, which
may or may not map to what others consider
objective reality.

Limiting the bounds of constructivism to
the study of school subjects is a productive
effort. As previously mentioned, systems
psychologists recognize that the traditional
model of schooling long ago reached the
upper limit of its capability. Therefore,
the design of constructivist learning envi-
ronments in schools can be a significant
step forward. Early research (Scardamalia &
Bereiter, 1994) indicates that students can
greatly improve their knowledge acquisi-
tion skills using technologies and constructs
based on information processing.

Students advancing their learning in con-
structivist learning environments represent
one level of achievement. However, they do
not represent promising options for develop-
ing the two kinds of expertise mentioned ear-
lier. Earlier in this chapter, we attempted to
classify development that leads to expertise
into two major categories: instruction that



EDUCATORS AND EXPERTISE: THEORIES AND MODELS 83

enables a large number of trainees to reach
an acceptable performance criterion and per-
haps be “certified” (i.e., pilots, surgeons, ship
captains); and instruction that enables a
select few individuals to achieve high lev-
els of independent learning via the mech-
anism of peer-critique. Given these con-
ditions, there are three areas that have
differing learning requirements: school sub-
jects, criterion performance, and outstanding
expertise.

Sometimes the difference in learning
requirements is presented as a conflict
between “instructivist” perspectives and
“constructivist” perspectives. Our view is
that both conceptualizations are useful,
depending on the kinds and stages of learn-
ing that must be accomplished. It is hard
to imagine a constructivist environment that
would reliably prepare one for adequate
entry level into the Army Rangers or Navy
SEALS. Conversely, if an objective of edu-
cation is to prepare students for future life-
long self-directed learning, then construc-
tivist learning environments appear to be far
more promising than the standard classroom
instruction (Hannafin & Hill, 2002). Stated
another way, one instructional approach
does not fit every learning situation.

One example where traditional instruc-
tional design techniques have been chal-
lenged by recent researchers includes the
work of Spiro, Feltovich, Jacobson, and
Coulson (1991), who have focused research
on the deficiencies of past educational
techniques and made recommendations
for adjustments in instructional design
to improve educational outcomes and
preparation for continued learning. These
researchers have made a case that real-world
situations are much more complex and ill-
structured than most instructional systems
reflect, and that these underlying biases and
assumptions in the design of instruction lead
to poor learning. Spiro and colleagues rec-
ommend a constructivist learning environ-
ment that emphasizes the real world com-
plexity and ill-structured nature of many
areas of learning (Spiro et al., 1991) and capi-
talizes on the modern computer as a flexible
device for meeting such demands. The result

is an instructional system that emphasizes
cognitive flexibility and nonlinear instruc-
tion, and is suited for progressively advanced
knowledge acquisition as well as transfer of
learning (Spiro et al., 1991).

In summary on this modern issue, the his-
tory of psychology suggests that there is no
one “truth” about how to accomplish learn-
ing and instruction. An examination of the
conflict between the traditionalists and the
constructivists clearly fits the historic per-
spective described in this chapter.

Educational Exploration of Expertise
as a Phenomenon

As the twentieth century unfolded, the
acquisition of expertise became an increas-
ingly targeted subject of scientific inquiry,
particularly among cognitive psychologists
who were attempting to describe the inter-
nal mechanisms responsible for mediating
superior human performance. Among these,
K. Anders Ericsson authored a salient line of
empirical research investigating expert per-
formance, a term he used to describe con-
sistent, measurable, and reproducible per-
formance of the world’s premier perform-
ers in a wide variety of domains (Ericsson,
1990; Ericsson, chapter 38). Ericsson’s
model of expert performance differentiated
from earlier expertise models such as Fitts
and Posner (1967) and Chi and Glaser (1982)
in its proposition that time and/or practice
alone could not produce the highest lev-
els of human performance. Ericsson pro-
posed that a particular type of exercise that
he termed deliberate practice, a technique
involving a learner’s full mental engagement
and oriented on the goal of overcoming cur-
rent performance boundaries, is required for
such achievement (Ericsson, 1996). Further
developing the model, Ericsson and Delaney
(1998) provided an expanded description on
the specialized techniques expert perform-
ers employ for both circumventing the lim-
itations of short-term memory and rapidly
accessing long-term memory. This line of
research has investigated viability of the
expert performance model across a wide
variety of performance domains, including
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memory, sports, chess, and music. Ericsson’s
model, with its emphasis on objective and
verifiable assessment of skill levels, remains a
leading empirical explanation of the acquisi-
tion of expert performance in a wide variety
of performance domains.

Conclusion

The historic evolution of views concerning
skills development, commencing with the
informal and individualized instruction of
Socrates and Plato and continuing to the
empirically measured and formally assessed
instruction of today, has resulted in the mod-
ern attempt at building a common, empiri-
cally based understanding of the attainment
of expertise and expert performance. To
achieve this goal, a transdisciplinary group of
scholars, including educational researchers,
cognitive psychologists, domain experts, and
many others, work together to build a shared
understanding of high-performance phe-
nomena. The standard, too, is now higher:
empirical performance measures, repro-
ducibility of results within and between
learners, and theoretical models that with-
stand the rigors of experimental validation
are all a part of this quest. Advances in
these fields provide evidence that empiri-
cally verifiable models, encompassing all of
the variables surrounding the phenomenon
of learning, are still a worthy goal for
educators.

Footnotes

1. This instructional technique bore loose resem-
blance to an older teaching methodology
traced as far back as the ninth century called
the Quaestio method, in which the master
embedded questions to be answered by the
scholar at selected points within the instruc-
tional material (Contreni, 1989).

2. Van Doren posits that the segmentation of the
university into “departments” helped facilitate
the shift towards specialization, the “uni” in
the term “university” having been abandoned
(p- 141). Van Doren points to World War II

as the point at which undergraduate univer-
sity programs totally abandoned the idea of a
liberal education, at which point “. .. the lib-
eral curriculum was abandoned almost every-
where, and the departmental organization of
the educational establishment was installed at
all levels below the university, even in many
elementary schools” (p. 142).
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CHAPTER 6

Expert Systems: A Perspective
from Computer Science

Bruce G. Buchanan, Randall Davis,
& Edward A. Feigenbaum

Expert systems are computer programs that
exhibit some of the characteristics of exper-
tise in human problem solving, most notably
high levels of performance. Several issues
are described that are relevant for the study
of expertise and that have arisen in the
development of the technology. Moreover,
because expert systems represent testable
models that can be manipulated in labora-
tory situations, they become a new method-
ology for experimental research on exper-
tise. The main result from work on expert
systems has been demonstrating the power
of specialized knowledge for achieving high
performance, in contrast with the relatively
weak contribution of general problem solv-
ing methods.

Al and Expert Systems:
Foundational Ideas

A science evolves through language and
tools that express its concepts, mechanisms,
and issues. The science of studying exper-
tise evolved largely in the second half of
the 20th century. It is not accidental that

this coincides with the development of
the digital stored-program computer, com-
puter programming, artificial intelligence
(AI) research, and information-processing
models of human cognition (Feltovich,
Prietula, & Ericsson, Chapter 4). The lan-
guage of cognitive information processing
was developed by the same Al researchers
and cognitive psychologists that had adopted
computation as the basis for models of
thought (Anderson, 1982; Feigenbaum &
Feldman, 1963; Newell & Simon, 1972;
VanLehn, 1996).

Al’s scientific goal is to understand intel-
ligence by building computer programs that
exhibit intelligent behavior and can be
viewed as models of thought. One core
of the Al science is concerned with the
concepts and methods of symbolic infer-
ence, or reasoning, by a computer, and
how the knowledge used to make infer-
ences will be represented inside the com-
puter. The term intelligence covers many cog-
nitive skills, including the ability to solve
problems, perceive, learn, and understand
language. Al scientists study and model all
of those.

87
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Some Al research came to focus on
the modeling of world-class human prob-
lem solving behavior (i.e., the behavior of
experts). This research, and its subsequent
applications, became known as “expert sys-
tems.” One of the most important contribu-
tions of expert systems to the study of exper-
tise has been to provide tools for building
testable models and thus determining char-
acteristics of expert problem solvers (Elstein
et al., 1978; Larkin et al., 1980; Pauker &
Szolovits, 1977).

Expert systems were developed in the
mid-1960s as a type of computer/Al pro-
gram that uses codified (hence, more or
less formalized) human expertise in order
to solve complex problems. As with human
experts whose expertise is in cognitive skills,
as opposed to motor skills, an expert sys-
tem is expected to exhibit the following four
abilities:

1. Problem solving at high levels of abil-
ity, well above the performance levels
of competent practitioners and novices,
even in the face of incomplete or incor-
rect descriptions of problems.

2. A capacity to explain the relevant factors
in solving a problem and to explain items
in its knowledge base.

3. The ability to separate facts about the
subject matter domain from procedures
and strategies that use those facts (declar-
ative vs. procedural knowledge).

4. A capacity to modify its knowledge base
(KB) and to integrate new knowledge into
the KB.

Expert systems have brought new meth-
ods and new questions into the study of
expertise and into the science and engineer-
ing of artificial intelligence. Some of the
questions addressed by this work are:

1. Can expert-level performance be achie-
ved by a computer program without in-
tentionally simulating experts’ knowl-
edge structures and reasoning methods?

2. If some of what an expert knows is tacit
knowledge, how can it be made explicit?

3. How does someone without specialized
knowledge elicit an expert’s knowledge of
a problem area?

4. What general representation of knowl-
edge is simple enough to be manageable
and complex enough to express the rele-
vant expertise of a specialist?

5. Are some types of knowledge more criti-
cal to high performance than other?

6. What experiments can measure accu-
rately a computer’s, or person’s, level of
expertise?

Some interesting questions arise in the
course of defining an expert system in the
first place. For instance, is performance alone
sufficient to call a system (or a person) an
expert?’ How much does the speed of per-
formance matter in the definition of exper-
tise, even though it has been noted that
experts do in fact solve problems faster than
novices (Anderson, 1982; Arocha & Patel,
1995)? Again, though it has been noted that
experts use different problem solving strate-
gies than novices and select relevant infor-
mation better (Shanteau, 1988), how much
do these characteristics define expertise?
Asking lay persons to characterize intelligent
behavior (Berg & Sternberg, 1992) resulted
in characteristics that also suggest questions
about the nature of expertise, which we
have used to help define intelligent sys-
tems (Buchanan, 1994). Because expert sys-
tems rely essentially on explicitly articulated
knowledge, the terms “expert system” and
“knowledge-based system” are often used
synonymously, suggesting still further ques-
tions about the role of knowledge in human
expertise.

The area of human intellectual endeavor
to be captured in an expert system is called
the task domain. Task refers to some goal-
oriented, problem solving activity. Domain
refers to the subject area within which the
task is being performed. Typical tasks are
diagnosis, planning, scheduling, configura-
tion, and design. Examples of task domains
(just a few of thousands) are troubleshoot-
ing an automobile engine, scheduling aircraft
crews, and determining chemical structure
from physical data.
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Example: The PUFF Expert System
for Diagnosing Lung Disease

PUFF is an early expert system that provides
a useful concrete example of the concept
(Rutledge et al., 1993). In the domain of
pulmonary medicine one important task is
the diagnosis of specific lung disorder(s).
A patient is asked to breathe through a
mask connected to an airflow meter. Data
on expiration and inhalation flows versus
time are captured by a device called a
spirometer. The data, combined with other
information from the patient’s history and
examination, are interpreted by a relatively
simple inference process that uses a knowl-
edge base (KB) of about 400 IF-THEN
rules. The rules relate patient data and
information to intermediate or final disease
diagnoses. PUFF outputs a paragraph of
diagnostic statements in a stylized English
that uses the common terminology of pul-
monary physiologists doing diagnoses in this
domain. Note the key role of specialization:
the knowledge is domain-specific (see also,
Feltovich et al., Chapter 4). It is just that
domain-specific knowledge that provides
the power, in much the same way that
the specialized training of human medical
specialists allows them to provide expertise
not often present in general practitioners.
The 400 rules of domain-specific knowl-
edge were elicited by a computer scien-
tist who worked closely with an expert
physician over a period of several weeks.?
Together they carefully examined hundreds
of actual cases from the physician’s files, cod-
ifying expertise into rules expressed in the
domain’s vocabulary, and therefore under-
standable to the physician and his peers.
This encoding of knowledge in the
domain vocabulary and its consequent com-
prehensibility is another key attribute of
expert systems. Because they reason using
a vocabulary familiar to people, expert sys-
tems can explain their reasoning simply by
playing back the sequence of rules applied
to specific cases. This notion of transparency
is another characteristic that distinguishes
expert systems from other computational
approaches to problem solving. (Consider

by contrast having a dynamic programming
algorithm play back its sequence of opera-
tions. Would that provide a comprehensible
account of why its answer was correct?)
Because the program’s rationale for each
diagnosis can be explained by the program
in the expert’s own vocabulary, the expert
can find the causes of errors quite readily.
The process of eliciting knowledge, testing
cases, and refining the knowledge base is
called knowledge engineering. The process
stops when, in the judgment of the expert
(physician in the case of PUFF), the perfor-
mance of the system (PUFF) is at expert level
(or better). With PUFF, the medical research
institute at which the work was done later
licensed the knowledge base to a commercial
firm that makes and sells spirometers. The
firm rewrote PUFF in an industrial strength
version that it sells with its instruments.

A Brief History of Al
and Expert Systems

Expert systems are based on the compu-
tational techniques of artificial intelligence
(AI). From its beginnings as a working sci-
ence in 1956, Al has been a growing collec-
tion of ideas about how to build computers
that exhibit human-level intelligence. One
important branch of Al sought to under-
stand and faithfully simulate the problem
solving methods of humans (the psychology
branch of AI). A second major branch sought
to invent methods that computers could
use for intelligent problem solving, whether
or not humans used them (the engineering
branch of Al). In both branches of the sci-
ence, the primary source of data and inspi-
ration was the human problem solver, and
both have contributed to the study of expert
systems.

In the earliest phase of A, roughly 1950—
1965, there was much emphasis on defining
efficient symbol manipulation techniques,
finding efficient means to search a problem
space, and defining general-purpose heuris-
tics for pruning and evaluating branches
of a search tree. The early programs
were demonstrations of these core ideas in
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problem areas that were acknowledged to
require intelligence and skill. For example, in
1956—57, Newell, Shaw, and Simon’s (1957)
Logic Theory Program found two novel and
interesting proofs to theorems in White-
head and Russell’s Principia Mathematica;
in 1957-58, Gelernter’s Geometry Theo-
rem Proving Program showed superb per-
formance in the New York State Regents
Examination in Plane Geometry; and by
1963 Samuel’s Checker Playing program
had beaten one of the best checker play-
ers in the United States (Samuel, 1950).
Samuel’s work is especially interesting, given
the expert-systems work that was to come,
because he chose the components of the fea-
ture vector used to evaluate the goodness of
a board position by extensively interviewing
master checker players.

Some researchers have pursued general
methods of cognition that were relatively
knowledge-free (e.g., Newell and Simon’s
General Problem Solver, McCarthy’s advo-
cacy of methods from mathematical logic,
and Robinson’s Resolution Theorem Prov-
ing Method that advanced that part of the
science). In this line of research (weak meth-
ods), expertise is seen to reside in the
power of reasoning methods such as search,
means-end analysis, backtracking, and ana-
logical reasoning. Others experimented with
knowledge-rich programs (strong methods)
in a quest for powerful behavior. With
knowledge-rich programs, expertise is seen
to lie in the domain-specific and common-
sense facts, assumptions, and heuristics in a
program’s knowledge base: in the knowledge
lies the power. The reasoning methods in
these programs are quite simple, often lit-
tle more than modus ponens (If A, and A
implies B, then B).

Theorem proving was a major focus in
Al in the 1960s. It appeared to be a univer-
sal method for solving problems in any task
domain. To some, it seemed that the main
problem of creating intelligent computers
had been solved (Nilsson, 1995) because in
all of this early work, expert-level perfor-
mance was considered to be due more to the
methods than to the knowledge.

However, the research focused on
knowledge-based methods continued, in

the quest to make programs into smart
and useful aids to humans. For example,
this was done in the domains of symbolic
algebra and calculus (e.g., the work of
Hearn [Hearn, 19660]; and of Moses and
an MIT team [Moses, 1971]). Knowledge
of mathematical specialists was sought
and used, though no attempt was made to
separate the mathematical knowledge base
from the inference methods.

The Emergence of the Expert Systems
Focus in Al Research in the Period
196575

Beginning in 1965, the DENDRAL research
project (Lindsay et. al., 1980) at Stanford
University was exploring several big ques-
tions in Al using the experimental method of
modeling-by-programming. The aim of the
project was to emulate the analytic expertise
of world-class chemists who could hypothe-
size organic chemical structures from spec-
tral data. The Al questions were similar to
those mentioned earlier:

1. Could the methods-based approach of
earlier Al work be augmented by domain-
specific knowledge to model human
expertise in difficult tasks of hypothesis
induction?

2. For programs that achieved expert levels
of performance, what was the source of
their power? Relatively speaking, was the
power in the knowledge used, or in the
reasoning method used?

3. How could the domain-specific knowl-
edge be represented in a way that was
modular, easily understandable to both
system-builders and end-users, efficient
at the engineering stage of knowledge
acquisition, and efficient at run time
when reasoning programs were using the
knowledge?

4. Were there any new Al methods, or com-
binations of old methods, to discover in
relation to the induction task?

The task of analyzing data from a mass
spectrometer on an unknown chemical sam-
ple was unusual in Al at the time because
it was recognized to require expertise not
held by the programmer: it was performed
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by chemists with doctoral degrees; it was
taught in graduate courses; and postdoctoral
trainees sought out a handful of chemists
with experience who were acknowledged
experts. In addition it was a task from empir-
ical science where some hypotheses are bet-
ter than others but none has a proof of cor-
rectness. Most researchers at the time were
choosing to study problem solving in the
context of games, puzzles, and mathematics
where a suggested solution was either cor-
rect or not and little knowledge of a specific
subject area was required.

By 1977, the DENDRAL project and its
siblings in chemistry, medicine, and other
areas of expertise (e.g., see Buchanan &
Shortliffe, 1984; Michie, 1979) resulted in
what was called by two MIT researchers
(Goldstein & Papert, 1977) a shift to the
knowledge-based paradigm in Al because its
results indicated that the wellspring of high
levels of performance is specialized knowl-
edge, not general inference methods.

It is important to note that the domains
chosen for Al research were small and
bounded in comparison with everything an
expert knows. This no doubt was a con-
tributing factor to making it possible to
encode enough of the relevant expertise to
achieve expert-level performance.

Production systems — collections of con-
ditional sentences with an interpreter no
more complex than modus ponens — were
in use to build psychological simulations of
people solving problems of various types
(Davis & King, 1984). These were suit-
able for encoding DENDRAL's specialized
chemistry knowledge (of mass spectrome-
try) because they were highly modular and
allowed use of the experts’ vocabulary. Each
rule, then, could be understood singly and
within groups of similar rules both as declar-
ative statements and as steps within the
interpretive process.

The DENDRAL project continued for
an extraordinary 18 years, becoming inte-
grated with the chemistry research of Pro-
fessor Carl Djerassi at Stanford. Over the
years, its knowledge model became quite
broad within its domain. The modularity
and effectiveness of its rule-based represen-
tation of knowledge enabled a learning pro-

gram, Meta-DENDRAL, to discover new
rules of mass spectrometry that were subse-
quently published in the refereed literature
of chemistry (Buchanan et al., 1976).

The Methodology of Expert Systems
and Knowledge Engineering

Building an expert system is as much an epis-
temological enterprise as it is a computer sci-
ence task. The specialists who do this work
(sometimes computer scientists, sometimes
domain experts) are called knowledge engi-
neers. For each expert system, the knowl-
edge engineer must choose and use a knowl-
edge representation (the symbolic form of the
knowledge, e.g., conditional rules, or expres-
sions in mathematical logic). The knowledge
engineer also chooses and uses a compat-
ible reasoning method (e.g., modus ponens,
as in rule-based systems, or reductio ad
absurdum, as in resolution theorem prov-
ing). There are many software development
tools to assist with these jobs. Above all, the
knowledge engineer is a patient and careful
epistemologist.

The Building Blocks of Expert Systems

Every expert system consists of two princi-
pal parts: the knowledge base and the rea-
soning, or inference, engine. Both are imple-
mented within a conceptual framework, or
model, that defines the overall problem solv-
ing strategy.

The knowledge base of expert systems con-
tains both factual and heuristic knowledge.

Factual knowledge is that knowledge of the
task domain that is widely shared, typically
found in textbooks or journals, and com-
monly agreed upon by those knowledgeable
in the particular field.

Heuristic knowledge is the less rigorous,
more experiential, more judgmental knowl-
edge of performance (see also Cianciolo
et al., Chapter 35). In contrast to factual
knowledge, heuristic knowledge is rarely dis-
cussed and is largely individualistic. It is
the knowledge of good practice, good judg-
ment, and plausible reasoning in the domain.
It is the knowledge that underlies the art
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of good guessing (Polya, 1954). Although
Polanyi (1962) and others have asserted that
much expertise relies on tacit knowledge
that cannot be articulated, the working view
of knowledge engineering is that tacit knowl-
edge is explicable.

The knowledge representation formalizes
and organizes the knowledge. One widely
used representation is the production rule, or
simply rule. A rule consists of an antecedent
(IF part) and a consequent (THEN part),
also called a condition and an action. The IF
part lists a set of conditions in some logical
combination. When the IF part of the rule is
satisfied, the THEN part can be concluded,
or its problem solving action taken.

A production rule is a somewhat broader
concept than a conditional sentence in logic.
First, it may carry a degree of certainty
that allows the program to draw a plausi-
ble conclusion that is less than certain from
premises that are themselves uncertain. Sec-
ond, both the condition and action parts may
name functions — which may be primitive
concepts in the task domain but complex
functions from an information-processing
point of view. These allow the program to
check whether the result of the condition
function is true (or “true enough”) and, if
it is, to execute the function in the action
rather than merely assert the truth of a state-
ment in logic. Expert systems whose knowl-
edge is represented in rule form are called
rule-based systems (Buchanan & Shortliffe,
1984).

Another widely used representation,
called the structured object (also known as
frame, unit, schema, or list structure) is based
on a more passive view of knowledge. Such a
unit is an assemblage of associated symbolic
knowledge about an entity to be represented
(Minsky, 1981) including its place in a taxo-
nomic hierarchy, its most common proper-
ties, and its defining criteria. Typically, a unit
consists of a list of properties of the entity
and associated values for those properties.

Since every task domain consists of many
entities that stand in various relations, the
properties can also be used to specify rela-
tions, and the values of these properties are
the names of other units that are linked

according to the relations. One unit can also
represent knowledge that is a special case
of another unit, or some units can be parts
of another unit. Structured objects are espe-
cially convenient for representing taxonomic
knowledge and knowledge of prototypical
cases.

The problem solving model (or framework,
problem solving architecture, or paradigm)
organizes and controls the steps taken to
solve the problem. These problem solving
methods are built into program modules we
earlier referred to as inference engines (or
inference procedures) that use knowledge in
the knowledge base to form a line of reason-
ing. Whereas human experts probably use
combinations of these, and more, expert sys-
tems have been successful following each of
these strategies singly.

One common but powerful paradigm
involves the chaining of IF-THEN rules to
form a line of reasoning. If the chaining
starts from a set of conditions and moves
toward some conclusion, the method is
called forward chaining. If the conclusion is
known (for example, a goal to be achieved)
but the path to that conclusion is not
known, then reasoning backwards is called
for, and the method is backward chaining.
Data interpretation problems tend to call
for forward chaining. Diagnostic problems,
however, often call for backward chaining
because goals (and subgoals) direct the col-
lection of relevant data.

The blackboard model of reasoning
(Engelmore & Morgan, 1988; Erman et al.,
1980) is opportunistic in that the order of
inferences in problem solving is dictated by
the items that seem most relevant in the
problem description, in the partial solution,
or in the knowledge base. This model can be
used effectively to combine the judgments
of multiple expert systems with specialized
knowledge in different parts of the problem.

Still another paradigm, which empha-
sizes the power of experiential knowledge,
is case-based or analogical reasoning (Kolod-
ner, 1993; Leake, 1996). In a case-based rea-
soning system, previously solved problems
(cases) are stored in memory. A new prob-
lem is matched against those and the closest
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matches are retrieved to suggest solutions for
the new problem.

The Tools Used

Today there are presently two ways to build
expert systems. They can be built from
scratch, or built using a piece of develop-
ment software known as a tool or a shell.

PROGRAMMING LANGUAGES

The fundamental working hypothesis of
Al is that intelligent behavior can be pre-
cisely described as symbol manipulation and
can be modeled with the symbol-processing
capabilities of the computer. In the late
1950s, special programming languages were
invented that facilitate this kind of mod-
eling. The most prominent is called LISP
(LISt Processing) and has been extensively
used in expert-systems development. In the
early 1970s another Al programming lan-
guage, called PROLOG (PROgramming in
LOGic), was invented in France. LISP has
its roots in one area of mathematics (lambda
calculus), PROLOG in another (first-order
predicate calculus).

SHELLS, TOOLS

Only a small number of Al methods have
been developed in enough detail to be
useful in building expert systems. Currently,
there are only a handful of ways in which to
represent knowledge, to make inferences, or
to generate explanations. As a consequence,
software infrastructure can be built that con-
tains these useful methods and formalisms;
then the domain-specific knowledge
model can be added. Such software tools
are known as shells, or simply Al tools (e.g.,
CLIPS, 2004).

Building expert systems by using shells
offers significant advantages. A system can
be built to perform a unique task by enter-
ing into a shell all the necessary knowl-
edge about a task domain. The inference
engine is itself part of the shell. If the pro-
gram is not very complicated and if experts
have had some training in the use of a
shell, the experts can enter the knowledge

themselves, without the assistance of knowl-
edge engineers.

Two other properties of expert systems
are important and are commonly built into
the shell system: reasoning with uncertainty,
and explanation of the line of reasoning.

Facts about people and things in the
world are almost always incomplete and
uncertain. Expertise must include knowl-
edge and methods for dealing with facts
that are uncertain or missing altogether. An
expert, or expert system, may fill in reason-
able defaults by looking at prototypes or by
inferring plausible features from others that
are known. Or it may be possible to ignore
the missing information and deal just with
available data. Knowing how to treat incom-
plete descriptions is a small, but important,
part of high performance and expertise.

Inference is also typically uncertain — few
inferences outside of mathematics are abso-
lutely true. To deal with uncertain inference,
a rule may have associated with it a confi-
dence factor or a weight. The set of meth-
ods for using uncertain knowledge in com-
bination with uncertain data in the reason-
ing process is called reasoning with uncer-
tainty. One important method for reason-
ing with uncertainty combines probability
statements using Bayes’ Theorem to infer
the probabilities associated with events or
outcomes of interest. Whereas Tversky and
Kahneman (1974) have shown that even
expert decision makers fail to combine prob-
ability statements rationally (i.e., according
to Bayes’ Theorem and other laws of proba-
bility), a program makes no such errors. This
helps emphasize the point that expert sys-
tems are normative models of human exper-
tise as it ought to be applied, not descriptive
computational models of observed human
performance (with all of its foibles).

The Applications of Expert Systems

Expert systems are widely used today as
surrogate experts and decision-making assis-
tants — in business, manufacturing, and ser-
vice industries, in health care, education,
finance, science, space exploration, and
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defense (see also, Chapters 19—33). The ben-
efits of expert systems derive from a few
basic facts:

1. Computers process information faster
and more reliably than people.

2. Computer software can be replicated
cheaply and easily.

3. Expertise is scarce.

Because of these facts, the major benefits
become:

1. A speed-up of human professional or
semi-professional work — typically by a
factor of ten and sometimes by a factor
of a hundred or more.

2. Improved quality of decision making. In
some cases, the quality or correctness of
decisions evaluated after the fact show a
ten-fold improvement.

3. Major internal cost savings. Savings
within companies can result from quality
improvement or more efficient produc-
tion of goods and information, and pro-
vide a major motivation for using expert
systems.

4. Preservation of expertise. Expert systems
are used to preserve scarce know-how in
organizations, to capture the expertise of
individuals who are retiring, and to pre-
serve corporate know-how so that it can
be widely distributed to other factories,
offices, or service centers of the company
(Hoffman & Lintern, Chapter 12).

5. Wide spectrum of applications. Applica-
tions of expert systems find their way into
most areas of knowledge work and are as
varied as helping salespersons sell modu-
lar factory-built homes to helping NASA
plan the maintenance of a space shuttle
in preparation for its next flight. In gen-
eral terms, the applications tend to cluster
into the following six major classes.

Diagnosis and Troubleshooting
of Devices and Systems

This class comprises systems that diagnose
faults and suggest corrective actions for a
malfunctioning device or process. Medical
diagnosis was one of the first knowledge

areas to which expert-systems technol-
ogy was applied (see e.g., Shortliffe 1976,
Norman et al.,, Chapter 19), but diagno-
sis of engineered systems quickly became
important commercialy. There are proba-
bly more diagnostic applications of expert
systems (including telephone help desks
and equipment troubleshooting) than any
other type. The diagnostic problem can be
stated in the abstract as: given the evi-
dence presenting itself what is the under-
lying problem/reason/cause?

Planning and Scheduling

Systems that fall into this class analyze a
set of one or more potentially complex and
interacting goals in order to determine a set
of actions to achieve those goals, and/or pro-
vide a detailed temporal ordering of those
actions, taking into account personnel,
materiel, and other constraints (see also
Durso & Dattel, Chapter 20). This class has
great commercial impact. Examples involve
airline scheduling of flights, personnel, and
gates; cargo loading and unloading for mul-
tiple ships in a port; manufacturing job-
shop scheduling; and manufacturing process
planning.

Configuration of Manufactured Objects
from Subassemblies

Configuration is historically one of the most
important of expert system applications and
involves synthesizing a solution to a prob-
lem from a set of elements related by a set
of constraints. Configuration applications
were pioneered by computer companies as
a means of facilitating the manufacture of
semi-custom minicomputers (McDermott,
1982). The technique has found its way into
use in many different industries, for exam-
ple, modular home building, telecommu-
nications, manufacturing, and other areas
involving complex engineering design and
manufacturing.

Financial Decision Making

The financial services industry has been a
vigorous user of expert-system techniques.
Early applications were in credit card fraud
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detection software. Advisory programs have
been created to assist bankers in determin-
ing whether to make loans to businesses and
individuals. Insurance companies have used
expert systems to assess the risk presented by
a customer and to determine a price for the
insurance. In the financial markets, foreign-
exchange trading is an important expert-
system application.

Knowledge Publishing

The primary function of the expert system
is to deliver knowledge that is relevant to
the user’s problem, in the context of that
problem. Two widely distributed expert sys-
tems are in this category: an advisor that
counsels a user on appropriate grammatical
usage in a text, and a tax advisor that accom-
panies a tax preparation program and advises
the user on tax strategy, tactics, and individ-
ual tax policy. Note that in both cases the
role of the system is to find and then present
the user with knowledge relevant to a deci-
sion the user has to make.

Process Monitoring and Control

Systems in this class analyze real-time data
from physical devices with the goal of notic-
ing anomalies, predicting trends, and con-
trolling for both optimality and failure cor-
rection. Examples of real-time systems that
actively monitor processes can be found in
steel making, oil refining, and even the con-

trol of space probes for space exploration
(Nayak & Williams, 1998§).

Issues about Expertise Arising from
Work on Expert Systems

As one would expect, the two main areas
for research on expert systems are also
central issues in Al: knowledge representa-
tion and reasoning. In addition, three other
major lines of work take on extra impor-
tance in dealing with expert systems: knowl-
edge acquisition, explanation, and valida-
tion. Within each of these areas many issues
have been explored in both psychology and
AL for some of them there have been

substantial results (e.g., Chi et al.,, 1988;
Feltovich et al., 1997), whereas for others
these issues are driving new research.

Knowledge Representation

In knowledge representation, the key top-
ics are concepts, languages, and standards
for knowledge representation (see also Chi,
Chapter 10; Hoffman & Lintern, Chap-
ter 12). There are many issues involved in
scaling up expert systems: defining the prob-
lems encountered in the pursuit of large
knowledge bases; developing the infrastruc-
ture for building and sharing large knowl-
edge bases; and actually accumulating a large
body of knowledge, for example, common-
sense knowledge or engineering and techni-
cal knowledge. Moreover, expertise involves
an efficient organization of knowledge: a dis-
parate collection of unrelated facts does not
constitute expertise.

As with human experts, problem solving
by computer requires an efficacious repre-
sentation of a problem and of the knowl-
edge needed to solve it (Davis et al., 1993).
IF-THEN rules, for example, seem “natu-
ral” for stating the inferential knowledge
needed to diagnose the causes of many med-
ical problems or for classifying loan appli-
cants into levels of credit risk. However,
work on expert systems has shown that a
single representation can be insufficient for
different tasks in the same domain (Clancey,
1985). For example, teaching about a sub-
ject domain requires different knowledge
and skills from solving problems in the
domain. Moreover, work has shown that dif-
ferent representations may be used equally
well for the same task in a domain (Aikins,
1983). Diagrams are known to be useful for
human problem solving (Polya, 1954) but
their use by computer is still only partially
understood.

Experts’ knowledge is not homogeneous
and can be categorized along at least two
dimensions: formal versus informal knowl-
edge, and public versus private (Forsythe,
Osheroff, Buchanan, & Miller, 1991). Knowl-
edge encoded in textbooks and journals is
formal and public, heuristics shared among
members of a lab tend to be informal and
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private. Paradoxically, when some private
knowledge (e.g., of how to get around an
institution’s rules) is made public, it loses
its value (because administrators change
the rules).

Strategic knowledge is important because
of its power: experts use more efficient prob-
lem solving strategies than novices. This
capability is replicated to some extent in
an expert system through meta-level knowl-
edge (Hayes-Roth et al., 1983). For example,
MYCIN’s diagnostic strategy was predomi-
nantly backward chaining: starting with the
goal of recommending therapy for a patient
with an infection, MYCIN works backward
to what it needs to know to do that — recur-
sively until the answers to what it needs to
know can be found by asking a doctor or
nurse. This conveys a sense of purpose to the
doctor or nurse using the program. However,
MYCIN was also given meta-knowledge to
direct the lines of reasoning even further,
For example, to indicate the order in which
to pursue different goals. Meta-knowledge
in the program, as with experts, also told
MYCIN whether enough information was
available on a case to warrant a conclusion
or whether it had enough knowledge rel-
evant to a case to attempt solving it at all
(Davis, 1980).

Knowledge Use

Knowledge, once codified, should be use-
ful for solving different kinds of prob-
lems within different reasoning paradigms.
Research on knowledge use, or problem
solving, involves the development of new
methods for different kinds of reasoning,
such as causal models, analogical reason-
ing, reasoning based on probability theory
and decision theory, and reasoning from case
examples. At present, each of these rea-
soning paradigms uses a specialized repre-
sentation of knowledge even for the same
problem domain. As with human prob-
lem solvers, communication is difficult when
programs are working in different concep-
tual frameworks.

The first generation of expert systems
was characterized by knowledge bases that

were narrow. Hence, their performance
was brittle: when the boundary of a sys-
tem’s knowledge was traversed, the sys-
tem'’s behavior went from extremely com-
petent to incompetent very quickly (Davis,
1989a,1989b). To overcome such brittleness,
researchers are now focusing on reasoning
from models, principles, and causal mecha-
nisms. Thus, a knowledge-based system will
not have to know everything about an area,
as it were, but can reason with a broader base
of knowledge by using the models, the prin-
ciples, and the causal mechanisms.

As mentioned above, experts and expert
systems must be able to reason under uncer-
tainty (Tversky & Kahneman, 1974). Several
methods have been introduced for assessing
the strength of evidence and of the conclu-
sions it supports within expert systems (e.g.,
Zadeh, 1965; Pearl, 2002; Buchanan & Short-
liffe, 1984; Weiss et al., 1978; and Gordon &
Shortliffe, 1985). One of the lessons learned
from these investigations is that rough esti-
mates of uncertainty often support expert-
level performance. Moreover, rough esti-
mates do not create the illusion of knowing
facts with more precision than they are actu-
ally known.

As a result of the line of research starting
with the classic study by Simon and Chase
(1973), it is now recognized that expertise
is truly task specific and does not trans-
fer from one domain to another (see also
Feltovich et al., Chapter 4). Expertise depe-
nds on well-organized, specialized knowl-
edge much more than on either superior
memory skills (which would transfer) or
general problem solving ability (which also
would transfer).

Knowledge Acquisition (KA)

Experience is a prerequisite to human exper-
tise (Ericsson, Chapter 38). In expert sys-
tems, expertise gained through experience
can be codified in the knowledge base
(as rules and heuristics, definitions, tax-
onomies, prototypes, etc.), in the statistics of
prior associations, in a library of previously
solved cases, and in a library of prototypi-
cal cases.
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Knowledge acquisition refers to the task
of giving an expert system its knowledge
(i.e., eliciting and codifying it), a task
usually performed by knowledge engineers
(Hoffman & Lintern, Chapter 12). Unfortu-
nately, most KA is still done manually (and
slowly), although the process is now better
understood than before (Scott et al., 1993;
Hoffman et al.,, 1995). In addition, inter-
active tools have been developed to assist
in conceptualizing and encoding expertise
(Boose, 1989) and to assist in the process
of knowledge base refinement (Davis, 1979;
Pazzani & Brunk, 1991).

With some expert systems, previously
solved cases are stored in a library and used
to check new additions to the KB for con-
sistency. If an addition causes inappropriate
or inaccurate behavior when applied to pre-
vious cases, then either the addition needs
to be modified (the simplest explanation) or
modifications need to be made in the knowl-
edge or in the cases previously considered to
be correct. Some of the strategies for acquir-
ing and modifying expertise are explored in
(Davis, 1979).

[terative refinement of a knowledge base
using case presentations has been found to
be a successful method for eliciting knowl-
edge from an expert that might otherwise
appear to be inexplicable. Interviewing alone
is not as successful as interactive discus-
sions of specific problems. However, the
entire elicitation process is a social process
(Forsythe & Buchanan, 1992) and can fail
when the knowledge engineer fails to deal
with this fact.

Knowledge engineers find that some
types of knowledge are easier to elicit and
encode than others (Hoffman & Lintern,
Chapter 12). Troubleshooting procedures
that are given to untrained persons at central
help desks, for example, are natural starting
places for discussions with an expert. On the
other hand, in general, knowledge required
for perceptual tasks is harder to make pre-
cise. For example, it is more difficult to eluci-
date heuristics that refer to what something
“looks like,” as in whether (or how much) a
patient “looks sick” or the slurry from an oil
well “looks too thick.”

Continued maintenance of a knowledge
base is a key to continuing success. Since
most interesting tasks requiring expertise
are not static, the knowledge base requires
frequent updating. Organizing a body of
knowledge within a conceptual framework
that is familiar to an expert makes it eas-
ier to manage and easier to maintain (Ben-
nett, 1985). Machine learning has matured
to the point that knowledge bases for expert
systems can sometimes be learned from
stored descriptions of prior cases (Rule-
quest, 2005; Buchanan, 1989; Buchanan &
Wilkins, 1993). However, both a system’s
performance and the understandability of
its knowledge are improved after an expert
reviews and modifies the learned informa-
tion (Davis, 1979; Richards & Compton,
1998; Ambrosino & Buchanan, 1999). In any
case, the vocabulary and conceptual frame-
work in which the experiential data are
described are critical to the success of auto-
mated systems that search for associations in
the data, just as they are when experts are
looking for patterns in data.

Explanation

Experts can explain and justify their reason-
ing. Although they may leap to a conclu-
sion without consciously stepping through a
chain of inferences, they can, after the fact,
explain where their conclusions come from.
We expect them to be able to teach appren-
tices how to reason about hard cases and cri-
tique their own and others’ use of knowl-
edge. We would expect an expert system to
have some of the same capabilities. After all,
in order to commit resources to a recom-
mended action, we want to know the justi-
fication for it.

Expert systems have demonstrated the
ability to show how they reach a conclusion
by showing the rules that connect inferential
steps linking primary facts about a case with
the program’s conclusions, for example, its
recommendations for how to fix a problem
(e.g., in the MYCIN program [Buchanan &
Shortliffe, 1984 ]). They can also explain why
some pieces of knowledge (facts and infer-
ential rules) were used and others not used.
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And they allow users to query and browse
the knowledge base in order to see the scope
and limits of what the system knows.

However, expertise in a program rests
on implicit assumptions (Clancey, 1985). In
some contexts, for example, training, it is
important to be able to convey the assump-
tions and strategies, and even describe the
mechanisms on which they rest. Each task
and problem solving context dictates the
amount of detail that has to be made
explicit. But there will always be unstated
assumptions.

Evaluation

It became obvious that measuring a system’s
level of expertise by the size of its knowl-
edge base was misleading because the grain
size of the primitive concepts used can vary
widely. For example, in MYCIN the con-
cept of degree of sickness could either be
a primitive, whose value would be filled
in by a physician or nurse, or it could be
inferred from rules using the values of several
other primitives such as temperature and
heart rate.

Rather than measuring the size of the
knowledge base, MYCIN’s level of exper-
tise was measured through a series of eval-
uations that compared its performance to
that of humans (Buchanan & Shortliffe,
1984). Because expertise in medical diag-
nosis, as in all other areas, is not pre-
cisely defined, MYCIN'’s performance was
ranked by a panel of acknowledged out-
side experts against the performance of sev-
eral persons, called the practitioners, whose
presumed expertise ranged from novice (a
medical student) to competent practitioner
(physicians without subspecialty training) to
local expert (faculty providing the subspe-
cialty training). The practitioners were asked
to look at descriptions of randomly selected
cases of infections and provide therapy rec-
ommendations. MYCIN was given infor-
mation from the same descriptions. Then
the panel of the outside experts was asked
whether each of the recommendations —
from the practitioners and (anonymously)

from MYCIN - agreed or disagreed with
their own recommendation for these cases.
Based on the number of times the outside
experts said that MYCIN’s recommendation
was acceptable, compared with numbers
of acceptable recommendations among the
practitioners, MYCIN’s performance was
found to be indistinguishable from that of
the local experts, and better than the perfor-
mance of the competent practitioners and
novice.

In this and other task domains for which
there isno gold standard of correctness, using
acknowledged experts to judge the relative
expertise of an expert system has become a
widely used method of evaluation. Numer-
ous other methods for judging the appropri-
ateness and correctness of knowledge bases
have also been proposed (see the bibliogra-
phy in Buchanan, 199s).

Future Directions and Main Result
Regarding Expertise

Although work on expert systems has eluci-
dated many issues regarding expertise and,
perhaps most important, has provided tools
for building testable models, can we say what
some important future directions are, and
what the most important thing we have
learned is, from all of these experiments?

Future Directions

Except for Internist (Pople et al., 1975) and
a few other programs, most expert systems
have been narrow in the scope of their
domain because knowledge acquisition has
been difficult and costly. A consequence is
that continuing knowledge maintenance of
an expert system is also difficult and costly.
Research directions in expert systems and,
more generally, in Al are seeking to widen
the scope and size of KBs and facilitate
knowledge acquisition.

VERY LARGE KNOWLEDGE BASES

If knowledge is the source of power for intel-
ligent systems (as we have argued), then



EXPERT SYSTEMS: A PERSPECTIVE FROM COMPUTER SCIENCE 99

it is a reasonable bet that more knowledge
will enable greater intellectual power. In
particular, in the mid-1980s Lenat envi-
sioned that a very large KB, encoding and
representing millions of items about the
ordinary world in which ordinary people live
and act, would enable commonsense behav-
ior in Al programs (Lenat & Guha, 1990).
Although common sense is not sufficient
for expert behavior in specialized areas, it
is unquestionably necessary.

Lenat’s research team, CYC, now a com-
pany (CYC Corp.), has built such a large
knowledge base. (They have also made an
important subset of the CYC KB, called
OpenCYC, available to the research com-
munity.) The CYC KB is a tour de force
of knowledge representation and knowledge
elicitation at both the heuristic and the log-
ical levels. It has been, and continues to
be, manually constructed by a trained cadre
of researchers who are, essentially, applied
epistemologists. One hypothesis is that the
manually encoded core of the CYC KB
will eventually enable powerful machine-
learning processes (Lenat & Feigenbaum,
1987). Testing that hypothesis experimen-
tally is one of the most important of current
issues.

Another effort to encode a large body of
commonly held knowledge is being under-
taken by the Openmind project (www.
openmind.org). It solicits participation of
any willing user of the World Wide Web in
the task of accumulating knowledge about
all the things an average person knows but
takes for granted, because they are so obvi-
ous. In contrast with the extremely careful
knowledge engineering of CYC, this effort
works on the premise that a sufficiently large
body of “good enough” common sense will
still be powerful. By enlisting users all over
the world to help build it they hope to accu-
mulate a very large knowledge base in a rel-
atively short time.

EXTRACTING KNOWLEDGE FROM THE WEB
AND FROM OTHER LARGE DATABASES

Much of the world’s knowledge, especially
that being newly generated, already has a

computer-based form, as textual or graph-
ical entries in the World Wide Web. A sub-
stantial international effort is under way
to define, and later distribute, semantic
markup languages that would empower
those who create Web or database entries
to give some meaning to their text or
graphics. The flow of research communi-
cations about the so-called semantic web
(Berners-Lee et al. 2001) are on the web
site www.semanticweb.org. The technology
for traversing the Web to infer knowl-
edge from the semantic markups is com-
plex, in part because it involves semantic
structures called ontologies, and needs some
human assistance (at least for the foreseeable
future).

When prior observations and experi-
ence are codified in structured database,
induction methods can extract useful pat-
terns. These methods range from statistical
regression to knowledge-based rule learn-
ing (Mitchell, 1997). Additional research on
extracting knowledge from existing sources
will address the issues of reading and under-
standing textbooks, diagrams (Hammond &
Davis, 2004), learning from large databases,
learning by watching (Wilkins, Clancey, &
Buchanan, 1987), learning by doing, and
learning from unrestricted dialogues.

KNOWLEDGE SHARING

Considerable effort could be saved if expert
systems working in related domains were
able to share their knowledge (Borron et al.,
1990). For example, partial knowledge of
insects is common to many expert systems
dealing with agricultural pests, yet each spe-
cific expert system currently requires rep-
resenting that overlapping knowledge in its
own framework. The goal of knowledge-
sharing research is to overcome the iso-
lation of first-generation expert systems,
which rarely interchanged any knowledge.
Hence, the knowledge bases that were
built for expert systems in the 1980s were
not cumulative. In addition to sharing
among expert systems, large organizations
must share knowledge among people within
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their organisations and their customers.
Knowledge management systems (Smith &
Farquhar, 2000) enable the distribution of
corporate-wide information and knowledge
efficiently and effectively.

Main Result: The Knowledge-
Is-Power Theme

The most important ingredient in any expert
system is knowledge. The power of expert
systems resides in the specific, high-quality
knowledge they contain about task domains.
Al researchers will continue to explore
and add to the current repertoire of gen-
eral knowledge representation and reason-
ing methods. In the knowledge resides the
power.

For an Al program (including an expert
system) to be capable of behavior at high
levels of performance on a complex intel-
lectual task, perhaps surpassing the highest
human level, the program must have exten-
sive knowledge of the domain. Knowledge
means things like terms for entities, descrip-
tions of those entities and procedures for
identifying them, relationships that organize
the terms, and entities for reasoning, sym-
bolic concepts, abstractions, symbolic mod-
els of basic processes, fundamental data, a
large body of remembered instances, analo-
gies, and heuristics for good guessing, among
many other things. These, we believe, are the
essential inqredients of expertise.

In contrast, programs that are rich in gen-
eral inference methods — some of which may
even have some of the power of mathe-
matical logic — but poor in domain-specific
knowledge can behave expertly on almost
no tasks. The experimental literature on the
study of human expertise (Feltovich et al.,
Chapter 4) is understood in the same way;
for example, the classic study showing chess
masters (vs. novices) bring to bear about fifty
thousand things in their recognition of chess
situations (Simon & Chase, 1973).

Because of the importance of knowl-
edge in expert systems and because current
knowledge-acquisition methods are slow
and tedious, much of the future of expert

systems depends on breaking the know-
ledge-acquisition bottleneck and on codi-
fying and representing a large knowledge
infrastructure (Chi, Chapter 10; Hoffman &
Lintern, Chapter 12).

Footnotes

1. The Deep Blue chess program (Deep Blue,
2005) is a case in point. Although it won a cele-
brated match against the reigning world cham-
pion, its success was probably due more to the
number of possibilities it could consider at each
move than to its knowledge of chess.

2. This development time was atypically short in

our experience. Some of the fast development
may be due to a good fit between the expert’s
reasoning processes and the conceptual frame-
work of the program, the well-defined nature
of the pulmonary diagnosis task from the start,
and the skill and motivation of the develop-
ment team.

3. The literature on expert systems is vast. Several

good starting places are listed among the spe-
cific references, but we also suggest perusing
conference proceedings, journals, and web sites
found by searching the web for “expert sys-
tems.” One current source in particular bears
mentioning: http://www. aaai. org/aitopics/
html/expert.html.
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Professionalization, Scientific Expertise,
and Elitism: A Sociological Perspective

Julia Evetts, Harald A. Mieg, & Ulrike Felt

Introduction

A key principle of sociology is that the lives
of individuals cannot be understood without
considering the social contexts in which the
individuals live. Sociology is both a science
and humanistic discipline that examines
explanations based on structure, culture, dis-
course, and action dimensions in order to
understand and interpret human behavior,
beliefs, and expectations. This chapter will
therefore examine the social contexts for,
and different interpretations of, expertise,
particularly within the context of profes-
sional work, science, and politics.

From a psychological point of view,
expertise may be studied without respect
to social contexts (Feltovich, Prietula, &
Ericsson, Chapter 4). In contrast to this, soci-
ology concerns itself with contextual condi-
tions of the development of expertise and its
functions in modern societies. From a socio-
logical point of view, expertise and experts
are relational notions: to be an expert always
means to be an expert in contrast to non-
experts, that is, to laypersons (see also
Mieg, Chapter 41). The dichotomy between

experts and laypersons often implies not
only a gradient of expertise, but also gra-
dients in other social dimensions, such as
prestige, privileges, and power. Sociological
propositions about experts and expertise
generally refer to this dichotomy.

Section One of this chapter deals with
professions as the main form of an institu-
tionalization of expertise in industrialized
countries, the most prominent being lawyers
and the medical profession. As we will see,
professions can be analyzed as a generic
group of occupations based on knowledge
and expertise, both technical and tacit. Pro-
fessions are essentially the knowledge-based
category of occupations that usually follow
a period of tertiary education and voca-
tional training and experience. As Abbott
puts it, professionalism has the “quality
of institutionalizing expertise in people”
(Abbott, 1988, p. 323). There exists a long
line of theorizing on professions that also
includes Marxist and Weberian interpreta-
tions. Today, professionalism is being used
as a discourse to promote and facilitate
particular occupational changes in service
work organizations. Therefore, the study of
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professions includes the analysis of how
the discourse on professionalism operates
at occupational/organizational (macro) and
individual/employee (micro) levels.

Section Two of this chapter is concerned
with the sociology of science. Scientists are
regarded as experts par excellence, and sci-
ence is the expert system par excellence.
From a sociological perspective, science as an
expert system is based on specific practices of
knowledge production that have gained social
and cultural authority.

Section Three deals with the relation-
ship between experts and elites. Notions of
“elite” imply not only power, prestige, and
privileges as key components, but also the
idea of excellence in a field of activity that
may be seen as an intersection with notions
of “expert.” From a political point of view,
“expert power” (Turner, 2001) is a problem
because it violates the equality conditions
presupposed by democratic accountability.
We will have to ask: What role do experts
play in the formation and functioning of
elites, and what role does expertise play in
the acquisition of legitimacy and the estab-
lishment of elite positions?

As we will see, the golden thread run-
ning through the sociological discussion on
experts is social closure (Murphy, 1988):
professions, sciences, and expert elites are
forms of exclusion, separating experts from
nonexperts. Sociology studies the structure,
culture, discourse, and action dimensions
underlying this process of social closure.

Professional Expertise: The Sociology
of Professional Groups

One way of operationalizing and analyzing
the concept of expertise in sociology is by
means of its formation and utilization in
different professional occupational groups.
This will be addressed in this section where
the focus is the history, concepts, and theo-
ries of the sociology of professional groups.
This intellectual field has a long and com-
plex history. It is clearly linked and closely

associated with the sociologies of work and
occupation, where Anglo-American sociol-
ogists began to differentiate particular occu-
pations (such as law and medicine) in terms
of their aspects of service orientation and
“moral community,” and hence their contri-
bution to the stability and civility of social
systems. In Europe generally, the influence
of the study of work and occupations on
the analysis of professions has been strong.
The focus has been wide, including occu-
pational identity and socialization (Dubar,
2000), but also the analysis of professional
elites or “cadres” (Gadea, 2003) and the
consideration of the professions as employ-
ment in public sector organizations (Svens-
son, 2003).

The study of the sociology of organiza-
tions is also strongly influencing analysis of
professions because even the traditional pro-
fessions of law, and particularly medicine,
increasingly involve employment in work
organizations; hence, the differences in the
professional practitioners’ employment rela-
tions (compared with other employees) are
reducing or disappearing. Indeed it is some-
times claimed that professions, as a special
(privileged) category of service-sector occu-
pations, are in decline. Professions, as a cat-
egory, have been criticized as not being a
generic occupational type (Crompton, 1990)
and have been perceived as under threat
from organizational, economic, and politi-
cal changes (e.g., Greenwood & Lachman,
1090; Reed, 1996). Professions are portrayed
as experiencing a reduction in autonomy and
dominance (Freidson, 1988; Mechanic, 1991;
Allsop & Mulcahy, 1996; Harrison, 199g;
Harrison & Ahmad, 2000); a decline in their
abilities to exercise the occupational control
of work (Freidson, 1994); and a weakening of
their abilities to act as self-regulating occu-
pational groups (MacDonald, 199s5), able
to enter into “regulative bargains” (Cooper,
Lowe, Puxty, Robson, & Willmott, 1988)
with states.

Many other researchers, often from
non-Anglo-American societies, have argued
that knowledge-based occupations are the
expanding employment categories and the
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growth sectors of labor markets in developed
(Lyotard, 1984; Perkin, 1988; Reed, 1996;
Frenkel, Korczynski, Donoghue, & Shire,
1995 ), transitional (Buchner-Jeziorska, 2001;
Buchner-Jeziorska & Evetts, 1997) and
developing societies (Hiremath & Guda-
gunti, 1998; Sautu, 1998). This interpreta-
tion has focused on the expansion of occupa-
tions based on knowledge (Murphy, 1988),
whether or not the concept of profession
is used, and the growing capacity of higher
education systems in most societies to pro-
duce workers who are educated and trained.
It is also the case in Europe that in the com-
mon market of the European Union (EU)
there are changes in the political and eco-
nomic environment for professions. There
are attempts both to harmonize professional
service provision, on the one hand, and to
deregulate, on the other. In 2003, the EU
Commission invited the European profes-
sional federations to take part in the process
of defining vocational qualifications for their
members on a European level (Evetts, 2001;
Evetts & Dingwall, 2002), which could refo-
cus the emphasis on knowledge work as the
new wealth of nations. The sociology of pro-
fessional groups, however, has its own intel-
lectual history.

The Early Years: Professionalism as
a Normative and Functional Value

The earliest analyses and interpretations of
professional groups tended to focus on and
to utilize the concept of professionalism,
and for the most part these analyses referred
to professionalism as providing a normative
value and emphasized its meanings and func-
tions for the stability and civility of social
systems.

Durkheim (1992) assessed professional-
ism as a form of moral community based
on occupational membership. Tawney (1921)
perceived professionalism as a force capable
of subjecting rampant individualism to the
needs of the community. Carr-Saunders and
Wilson (193 3) saw professionalism as a force
for stability and freedom against the threat
of encroaching industrial and governmen-

tal bureaucracies. Marshall (1950) empha-
sized altruism or the “service” orientation
of professionalism and how professionalism
might form a bulwark against threats to sta-
ble democratic processes.

The best-known, though perhaps the
most frequently misquoted, attempt to
clarify the special characteristics of pro-
fessionalism and its central normative and
functional values was that of Parsons (1951).
Indeed, Dingwall has claimed (Dingwall &
Lewis, 1983) that research in the sociology
of the professions is largely founded on
the contributions of Parsons, as well as the
work of Hughes. Parsons tried to clarify
the importance of professionalism through
“a theoretical base in the sociology of
knowledge, in terms of a socially-grounded
normative order” (Dingwall & Lewis, 1983,
p. 2). Parsons recognized, and was one of
the first theorists to show, how the capitalist
economy, the rational-legal social order (of
Weber), and the modern professions were
all interrelated and mutually balancing in
the maintenance and stability of a fragile
normative social order. He demonstrated
how the authority both of the professions
and of bureaucratic organizations rested
on the same principles (for example, of
functional specificity, restriction of the
power domain, application of universalistic,
impersonal standards). The professions,
however, by means of their collegial orga-
nization and shared identity, demonstrated
an alternative approach to the hierarchy
of bureaucratic organizations, towards the
shared normative end.

Whereas Parsons distinguished between
professions and  occupations, Hughes
regarded the differences between pro-
fessions and occupations as differences
of degree, rather than kind, in that all
occupational workers have expertise (Mieg,
Chapter 41 - “relative experts”). For Hughes
(1958), professions and occupations not
only presume to tell the rest of their society
what is good and right for it, they also
determine the ways of thinking about prob-
lems that fall in their domain (Dingwall
& Lewis, 1983, p. 5). Professionalism in
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occupations and professions implies the
importance of expertise but also trust in
economic relations in modern societies
with an advanced division of labor. In other
words, lay people must place their trust
in professional workers (electricians and
plumbers as well as lawyers and doctors)
and, as a result, some professionals acquire
confidential knowledge. Professionalism
requires professionals to be worthy of that
trust, that is, to maintain confidentiality
and to protect private knowledge and not
exploit it for self-serving purposes. In return
for this professionalism in relations with
clients, professionals are granted authority,
rewards, and high status.

Professions as Institutions:
Defining the Field

For a period in the 1950s and 1960s,
researchers shifted focus to the concept of
profession as a particular kind of occupation,
or as an institution with special characteris-
tics. The difficulties of defining these spe-
cial characteristics and clarifying the differ-
ences between professions and occupations
have long troubled analysts and researchers.
For a period the “trait” approach occu-
pied sociologists who struggled to define the
special characteristics of professional (com-
pared with other occupational) work. For
example, Greenwood (1957) and Wilensky
(1964) argued that professional work had
a number of characteristics: it required a
long and expensive education and training
in order to acquire the necessary knowledge
and skill; professionals were autonomous
and performed a public service; they were
guided in their decision making by a profes-
sional ethic or code of conduct; they were
in special relations of trust with clients; and
they were altruistic and motivated by univer-
salistic values. In the absence of such charac-
teristics, the label “occupation” was deemed
to be more appropriate, and for occupations
having some but not all of the character-
istics, the term “semi-profession” was sug-
gested (Etzioni, 1909).

The “trait” approach is now seen largely
as inadequate in that it did nothing to assist

our understanding of the power of particu-
lar occupations (such as law and medicine,
historically) or of the appeal of “being a
professional” in all occupational groups. It
no longer seems important to draw a hard
line between professions and occupations.
Instead, sociologists regard both as similar
social forms that share many common char-
acteristics.

Researchers now handle the definitional
problem in different ways. Some avoid giv-
ing a definition of profession and instead
offer a list of relevant occupational groups
(e.g., Hanlon, 1998, claimed to be follow-
ing Abbott, 1988). Others have used the
disagreements and continuing uncertainties
about precisely what a profession is to dis-
miss the separateness of professions as a
field, although not necessarily to dispute
the relevance of current analytical debates.
Crompton (1990), for example, considered
how paradoxes and contradictions within
the sociological debates about professions
actually reflected wider and more general
tensions in the sociologies of work, occupa-
tions, and employment.

Hence, professions can be analyzed as
a generic group of occupations based on
knowledge and expertise, both technical
and tacit. Professions are essentially the
knowledge-based category of occupations
that usually follow a period of tertiary edu-
cation and vocational training and experi-
ence. Another way of differentiating these
occupations is to see professions as the
structural, occupational, and institutional
arrangements for dealing with work associ-
ated with the uncertainties of modern lives
in risk societies. Professionals are extensively
engaged in dealing with risk, and with risk
assessment, and, through the use of expert
knowledge, in enabling customers and
clients to deal with uncertainty (also Mieg,
Chapter 41). To paraphrase and adapt a list
in Olgiati, Orzack, and Saks (1998), profes-
sions are involved in birth, survival, phys-
ical and emotional health, dispute resolu-
tion and law-based social order, finance and
credit information, educational attainment
and socialization, physical constructs and
the built environment, military engagement,
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peacekeeping and security, entertainment
and leisure, and religion and our negotiations
with the next world.

Professionalization: The
Professional Project

During the 1970s and 1980s, when soci-
ological analysis of professions was domi-
nated by various forms of professionalism
as ideological theorizing and by the influ-
ence of Marxist interpretations, one con-
cept that became prominent was the “profes-
sional project.” The concept was developed
by Larson (1977) and included a detailed and
scholarly historical account of the processes
and developments whereby a distinct occu-
pational group both sought a monopoly in
the market for its service as well as status
and upward mobility (collective as well as
individual) in the social order. The idea of a
professional project was developed in a dif-
ferent way by Abbott (1988), who exam-
ined the carving out and maintenance of a
jurisdiction through competition, as well as
the requisite cultural and other work that
was necessary to establish the legitimacy of
a monopoly practice.

Larson’s work is still frequently cited,
and MacDonald’s textbook on professions
(1995) continues to use and to support Lar-
son’s analysis in the examination of the
professional field of accountancy. The out-
come of the successful professional project
was a “monopoly of competence legitimized
by officially sanctioned ‘expertise,” and a
monopoly of credibility with the public”
(Larson, 1977, p. 38). Larson’s interpreta-
tion has not gone unchallenged. Freidson
(1982) preferred market “shelters” to com-
plete monopolies in characterizing the
provision of professional service, which indi-
cated the incomplete nature of most market-
closure projects. It is also the case that
Larson’s careful analysis has been oversim-
plified by enthusiastic supporters, such that
some researchers talk about the professional
project, as if professions and professional
associations do nothing else apart from pro-
tecting the market monopoly. One aspect of
Larson’s work is of particular interest in this

section, however. Larson asked why and how
a set of work practices and relations that
characterized medicine and law become a
rallying call for a whole set of knowledge-
based occupations in very different employ-
ment conditions. This question points to
the importance of the appeal and attraction
of the concept of professionalism to skilled
workers in all types of modern society.

Another version of the “professional-
ization as market closure” has been the
notion of professions as powerful occupa-
tional groups who not only close markets and
dominate and control other related occupa-
tions, but also “capture” states and negotiate
“regulative bargains” (Cooper et al., 1988)
with states in the interests of their own prac-
titioners. Again, this was an aspect of theo-
rizing about professions in Anglo-American
societies that began in the 1970s (e.g,
Johnson, 1972), was influenced by Marxist
interpretations, and focused on medicine
and law. It has been a particular feature
of analyses of the medical profession (e.g.,
Larkin, 1983), where researchers have inter-
preted relations among health professionals
as an aspect of medical dominance as well as
gender relations (e.g., Davies, 1995).

Since the mid-1980s, the flaws in the
more extreme versions of the “professional
project” have become apparent. Annandale
(1998) has investigated aspects of medi-
cal dominance and has linked this with
diversity, restratification, and growing hier-
archy within the medical profession itself —
namely, only some doctors can become dom-
inant, along with some nurses and some
midwives. More generally, it has turned
out that governments could successfully
challenge the professions. Professions do
sometimes initiate projects and influence
governments, but as often professions are
responding to external demands for change,
which can be political, economic, cultural,
and social. This has resulted in a reap-
praisal of the historical evidence, which is
still incomplete. One line of development
has been the view that the demand-led the-
ory of professionalization needs to be com-
plemented by an understanding of the sup-
ply side (Dingwall, 1996). Instead of the
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question “How do professions capture
states?” it is suggested that the central ques-
tion should be “Why do states create pro-
fessions, or at least permit professions to
flourish?” This has resulted in a renewed
interest in the interpretation of profession-
alism as providing normative and functional
values. It has also spawned new interest in
the historical evidence about the parallel
processes of the creation of modern nation-
states in the second half of the 19th cen-
tury and the development of modern pro-
fessions in the same period. It is suggested,
for example, that professions might be one
aspect of a state founded on liberal princi-
ples, one way of regulating certain spheres
of risky life without developing an oppres-
sive central bureaucracy.

Professionalism: As Discourse
of Occupational Control

In the 199os researchers began to reassess the
significance of professionalism and its posi-
tive (as well as negative) contributions for
customers and clients, as well as for social
systems. To an extent this indicates the same
return to professionalism as normative and
functional value, but in addition there are
new directions in the analysis.

REAPPRAISAL

One result of this return and reappraisal is
a more balanced assessment of professional-
ism as providing normative value. In addi-
tion to protecting their own members’ mar-
ket position through controlling the license
to practice and protecting their elite posi-
tions, professionalism might also represent
a distinctive form of decentralized occupa-
tional control that is important in civil soci-
ety (see Durkheim, 19g2). It has been argued
also that the public interest and professional
self-interest are not totally at odds and that
the pursuit of self-interest may be compati-
ble with advancing the public interest (Saks,
1995). Professionalism might work also to
confer distinct professional values or moral
obligations that restrain excessive competi-
tion and encourage cooperation (Dingwall,

1996).

The claim is now being made (e.g,
Freidson, 1994, 2001) that professionalism
is a unique form of occupational control of
work that has distinct advantages over mar-
ket, organizational, and bureaucratic forms
of control. In assessing the political, eco-
nomic, and ideological forces that are exert-
ing enormous pressure on the professions
today, Freidson (1994) has defended pro-
fessionalism as a desirable way of pro-
viding complex, discretionary services to
the public. He argues that market-based
or organizational and bureaucratic meth-
ods impoverish and standardize the quality
of service to consumers and provide disin-
centives to practitioners. Thus, professions
might need to close markets in order to be
able to endorse and guarantee the educa-
tion, training, expertise, and tacit knowl-
edge of licensed practitioners, but once
achieved, the profession might then con-
centrate more fully on developing service-
oriented and performance-related aspects
(Halliday, 1987; Evetts, 19098). The process
of occupational closure will also result in
monopoly in the supply of the expertise and
the service, and probably also to privileged
access to salary and status. However, as has
been noted, the pursuit of private interests
is not always in opposition to the pursuit of
the public interest, and indeed both can be
developed simultaneously (Saks, 1995).

In general, then, some recent Anglo-
American analyses of professions have
involved the reinterpretation of the concept
of professionalism as a normative and func-
tional value in the socialization of new work-
ers, in the preservation and predictability of
normative social order in work and occu-
pations, and in the maintenance and sta-
bility of a fragile normative order in state
and increasingly international markets. The
result is now a more balanced and cautious
appraisal in which, for example, a possible
benefit is recognized in some professional
groups wanting to promote professionalism
as normative value. This latest interpretation
involves a reevaluation of the importance of
trust in client/practitioner relations (Karpik,
1989), of discretion (Hawkins, 1992), of the
importance of risk management (Grelon,
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1996), and of the value of expert judg-
ment (Milburn, 1996; Trépos, 19906). It also
includes a greater valuing of quality of ser-
vice and of professional performance in the
best interests of both customers (in order to
avoid further standardization of service pro-
vision) and practitioners (in order to protect
discretion in service work decision making)
(Freidson, 1994).

NEW DIRECTIONS

A different interpretation of the concept of
professionalism is also developing, and this
involves examination of professionalism as a
discourse of occupational change and con-
trol. This interpretation would seem to have
greatest relevance in the analysis of occupa-
tional groups in organizations where the dis-
course is increasingly applied and utilized.

There is now extensive use of the concept
of professionalism in an increasingly wide
range of work, occupational, organizational,
and institutional contexts. It is used as a mar-
keting slogan in advertising to appeal to cus-
tomers (Fournier, 1999) and in campaigns to
attract prospective recruits. It is used in com-
pany mission statements and organizational
aims and objectives to motivate employees,
and also in policy procedures and manuals.
It is an appealing prospect for an occupa-
tion to be identified as a profession and for
occupational workers and employees to be
labeled as professionals. The concept of pro-
fessionalism has entered the managerial lit-
erature and CPD (Continuing Professional
Development) procedures. The discourse
of professionalism is also claimed by both
sides in disputes and political and policy
arguments, and in disagreements between
practitioners and governments — particularly
with respect to proposed changes in fund-
ing and organizational and administrative
arrangements within health and education
(Crompton, 1990).

In trying to account for such wide-ranging
appeal and attraction of the discourse of
professionalism, a different interpretation is
required. It is suggested that professionalism
is being used as a discourse to promote and
facilitate particular occupational changes in
service work organizations. This includes

the analysis of how the discourse operates
at both occupational/organizational (macro)
and individual worker (micro) levels.

The occupational, organizational, and
worker changes entailed by this new con-
ception have been summarized by Hanlon
(1999, p. 121), who stated that “in short the
state is engaged in trying to redefine pro-
fessionalism so that it becomes more com-
mercially aware, budget-focused, manage-
rial, entrepreneurial and so forth.” Hanlon
emphasized the state because he was dis-
cussing the legal profession. When this
analysis is applied to the use of the dis-
course of professionalism in other occupa-
tional groups, the state might be less directly
involved, and the service company, firm,
organization, and perhaps pertinent regula-
tory bodies would probably be the construc-
tors, promoters, and users of the professional
discourse.

It is necessary to clarify and operational-
ize the concept of discourse. Here dis-
course refers to the ways in which work-
ers themselves are accepting, incorporating,
and accommodating the concepts of “profes-
sion,” and particularly “professionalism,” in
their work. It will also become apparent that
in the case of many, if not most, occupational
groups the discourse of professionalism is in
fact being constructed and used by the man-
agers, supervisors, and employers of workers,
and itis being utilized in order to bring about
occupational change and rationalization, as
well as to (self-) discipline workers in the
conduct of their work. It is argued that this
use of the discourse is very different from the
earlier (historical) constructions and uses of
“professionalism” within medicine and law —
from where the discourse originated.

At the level of individual actors, the
appeal to professionalism can be seen as
a powerful motivating force of control “at
a distance” (Miller & Rose, 1990; Burchell,
Gordon, & Miller, 1991). At the level of
systems, such as occupations, the appeal
to professionalism can be seen also as a
mechanism for promoting social change. In
these cases, however, the appeal is to a
myth or an ideology of professionalism that
includes aspects such as exclusive ownership
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of an area of expertise, autonomy and dis-
cretion in work practices, and occupational
control of work. However, the reality of
the new professionalism is very different.
The appeal to professionalism most often
includes the substitution of organizational
for professional values; bureaucratic, hierar-
chical, and managerial controls rather than
collegial relations; budgetary restrictions and
rationalizations; and performance targets,
accountability, and increased political con-
trol. In this sense, then, it can be argued that
the appeal to professionalism is in effect a
mechanism of social control at micro, meso,
and macro levels.

The Sociology of Professional Groups:
Theories and Results

When returning to the question of the
appeal of professionalism, it is necessary
to understand how professionalism as a
discourse is now being increasingly used
in modern organizations, institutions, and
places of work as a mechanism to facil-
itate and promote occupational change.
Why, and in what ways, have a set of
work practices and relations that historically
characterized medicine and law in Anglo-
American societies resonated first with engi-
neers, accountants, and teachers, and now
with pharmacists, social workers, care assis-
tants, computer experts, and law enforce-
ment agencies in different social systems
around the world?

The discourse of professionalism that is so
appealing to occupational groups and their
practitioners includes aspects such as exclu-
sive ownership of an area of expertise and
knowledge, and the power to define the
nature of problems in that area, as well
as the control of access to potential solu-
tions. It also includes an image of collegial
work relations, of mutual assistance and sup-
port rather than hierarchical, competitive,
or managerialist control. Additional aspects
of the discourse and its appeal are auton-
omy in decision making and discretion in
work practices, decision making in the pub-
lic interest fettered only marginally by finan-
cial constraints, and in some cases (for exam-

ple the medical profession historically) even
self-regulation or the occupational control of
work (Freidson, 1994).

The reality of professionalism in most ser-
vice and knowledge-based occupational con-
texts is very different, however, and even
medicine and law in Anglo-American social
systems are no longer exempt. Fiscal crises
have been features of most states, and such
crises have been explained by governments
as resulting from the rising costs of wel-
fare states and particularly social service pro-
fessionalism. Remedial measures to contain
the fiscal crises have been taken (sometimes
motivated, as in the UK, by a New Right
ideology), and these have included cut backs
in funding and increases in institutional effi-
ciency measures, as well as the promotion of
managerialist/organizational cultures in the
professional public service sector (including
medicine).

Accountability and audit, targets, and per-
formance indicators have now become fun-
damental parts of the new professionalism
(Evetts, 2003). Professionals of all kinds and
the institutions in which they work are sub-
ject to achievement targets to justify their
receipt of public expenditure. These, in turn,
enable the performance of particular orga-
nizations (such as schools, universities, and
hospitals), and the professionals who work
in them, to be measured, assessed, and com-
pared. Accountability has been operational-
ized as audit. Work organizations specify
such targets and sometimes, by means of
devolved budgets, are requiring all bud-
getary units to clarify and maximize income
streams while controlling expenditures.

It is also important to consider the appeal
of professionalism as a discourse of disci-
plinary control at the micro level. Fournier
(1999, p. 290) has demonstrated how the
reconstitution of employees as profession-
als involves more than just a process of
relabeling, “it also involves the delineation
of ‘appropriate work identities’ and poten-
tially allows for control at a distance by
inscribing the disciplinary logic of profes-
sionalism within the person of the employee
so labelled.” In new and existing occupa-
tional and organizational contexts, service
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and knowledge workers and other employ-
ees are having to, and indeed choosing
to, reconstitute themselves in organizational
and occupational forms that incorporate
career development for the self-managing
and self-motivated employee (Grey, 1994;
Fournier, 1998). In other words, those who
as workers act like “professionals” are self-
controlled and self-motivated to perform in
ways the organization defines as appropri-
ate. In return, those who achieve the targets
will be rewarded with career promotion and
progress.

In trying to understand how the dis-
course is used differently between occupa-
tional groups, it might be useful to turn to
McClelland’s categorization (1990, p. 170)
of “professionalization ‘from within’ (suc-
cessful manipulation of the market by the
group) and ‘from above’ (domination of
forces external to the group).” This catego-
rization was intended to differentiate Anglo-
American and German forms of profes-
sionalization, but instead it might be used
to indicate and explain the various usages
of, and indeed the appeal of, professional-
ism in different occupational groups. Where
the appeal to professionalism is made and
used by the occupational group itself “from
within,” then the returns to the group can
be substantial. In these cases, historically, the
group has been able to use the discourse in
constructing its occupational identity, pro-
moting its image with clients and customers,
and in bargaining with states to secure and
maintain its (sometimes self-) regulatory
responsibilities. In these instances the occu-
pation is using the discourse partly in its own
occupational and practitioner interests, but
sometimes also as a way of promoting and
protecting what it would claim to be the
public interest.

In the case of most contemporary ser-
vice occupations, however, professionalism
is being imposed “from above,” and for the
most part this means from the employ-
ers and managers of the service organiza-
tions in which these “professionals” work.
Here the discourse of dedicated service and
autonomous decision making are part of the
appeal of professionalism. In these cases,

however, the discourse is being used to
promote and facilitate occupational change
and as a disciplinary mechanism used by
autonomous subjects to ensure appropriate
conduct. The discourse is grasped by the
occupational group since it is perceived to
be a way of improving the occupation’s sta-
tus and rewards collectively and individu-
ally. However, the realities of professional-
ism “from above” are very different.

When professionalism is constructed and
demanded “from within,” and it corresponds
with a (supply-side) state’s willingness and
perception that the delegation of profes-
sional powers is in the state’s best interest,
then the aspects of normative and functional
values of professionalism can be paramount
in the discourse. The professional group con-
structs and controls the discourse that it con-
tinues to use in its own as well as in the
public’s interest. The historically powerful
professions of medicine and law have some-
times demonstrated opposition to “moral
conduct” and “appropriate behavior” mech-
anisms, however, particularly in their devel-
opment of alternative interpretations of the
public interest.

The willingness by states to concede pro-
fessional powers and regulatory responsibil-
ities (and for occupational groups to con-
struct and demand professionalism “from
within”) is now universally in decline. The
consequence of this is still diversity in the use
and construction of the discourse between
different occupational groups — although
this diversity might be in decline. The legal
profession now (in contrast to medicine)
is perhaps the best example of an occupa-
tional group in a relatively privileged posi-
tion and still able to construct profession-
alism “from within.” There are, however,
numerous occupational groups within the
profession of law, and in general it is those
occupations categorized as social service law,
rather than entrepreneurial law professions
(Hanlon, 1999), who are publicly funded.
Hence, the discourse is constructed and con-
trolled by others. The medical professions
are similarly highly stratified and differen-
tially powerful in the sense of being able
to construct and demand professionalism
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“from within.” It is also interesting to observe
that the professional groups who are becom-
ing powerful in international markets (for
example some accountancy and legal profes-
sions) might be in a better position to con-
struct and demand professionalism “from
within.”

In summary, the sociological analysis of
expertise has always been closely linked with
the analysis of professions and professional-
ism. However, unlike in the past, it seems
that increasingly the discourse of profes-
sionalism is being used to convince, cajole,
and persuade employees, practitioners, and
other workers to perform and behave in
ways that the organization or the institution
deem to be appropriate, effective, and effi-
cient. And “professional” workers are very
keen to grasp and lay claim to the norma-
tive values of professionalism. But profes-
sional expertise now needs to be measured,
assessed, regulated, and audited. From a dis-
course controlled and constructed by practi-
tioners, professionalism is now increasingly
used in work organizations and occupations
as an instrument of managerial control and
occupational change. The discourse includes
normative elements, but not in the sense
of increasing occupational powers. Organi-
zational professionalism is very different in
control and relationship terms from the his-
torical and idealized image of the indepen-
dent, semi-autonomous practitioner of the
liberal professions — very different from the
“third logic” analyzed by Freidson (2001).
It becomes even more important, therefore,
for sociologists to understand the appeal of
professionalism in new and old occupations,
and how the discourse is being used to pro-
mote and facilitate occupational change and
social control.

Professional groups have been one main
form of the institutionalization of expertise
in industrialized countries, and the socio-
logical analysis of professions has provided
different, and sometimes contrasting, inter-
pretations of professionalism and expertise
over time. We now turn to the sociology
of science and consider the processes and
procedures in science as an alternative form
(to professions) of the institutionalization of

expertise. Scientists are regarded as experts,
and science is the prime example of an
expert system with its own checks, valida-
tion procedures, recognition and authority
processes, and hence claims to legitimacy.
From a sociological perspective, science as an
expert system is based on specific practices
of knowledge production that have gained
social and cultural authority. The sociologi-
cal analysis of science as an institutionalized
form and social practice has varied over time
and offers different (sometimes contrasting)
interpretations of expertise.

Scientific Experts: The Social
Study of Science

When trying to trace and understand the cre-
ation and performance of scientific exper-
tise and the role of scientific experts from
the perspective of social studies of science, a
look from at least three different comple-
mentary angles seems necessary. First, the
question of the construction and protection
of the boundaries between the science sys-
tem — both as a knowledge system and as a
social territory — and other forms of expertise
present in society need to be addressed. In a
second step the social conditions and prac-
tices of knowledge production on a more
micro-sociological level have to be consid-
ered as being an important manifestation of
what gets defined as, or is (to be) under-
stood as, scientific expertise. Finally, the pic-
ture will be completed by taking a gender-
sensitive approach to the question of the
construction of expertise and experts.

The Shaping of Scientific Expertise: A
Historical Perspective

In trying to understand the place of modern
science in contemporary societies, a closer
look has to be taken at the processes and
procedures that play a part in constructing
the boundary around the territory labeled
“science” (Gieryn, 1995). This demarca-
tion is meant not only to delimit science
from other forms of cultural knowledge-
producing activities, but also to secure the
authority of scientific expertise in the larger
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societal setting and to be able to legitimately
claim autonomy over the definition of the
science system'’s internal structures, rules,
and practices. The very construction of this
knowledge system as an expert system, how
it continually performs deliberations about
which claims or practices are to be regarded
as scientific and which not, but also the ways
in which this expertise manages to become
accepted and gains a certain esteem, both
within the system but also in society at large,
has to be considered. In that sense, we have
to see what repertoire of activities has been
established in order to be able to meet chal-
lenges to scientific authority, and thus to
threats to credibility, power, and prestige.

It seems crucial to take different aspects
into account. The first is linked to the devel-
opment of institutional structures in which
scientific knowledge was first demonstrated
and negotiated (as in the framework of the
Royal Society), and in later phases also to
how it was produced. From a historical per-
spective one realizes that the production of
scientific knowledge gradually moved out
of the private context into specific settings
where the procedures, practices, and inter-
nal rules of this production were increasingly
standardized. Institutionalization, however,
served also to define who had access to these
places where scientific expertise was devel-
oped and negotiated (Shapin & Schaffer,
1985).

Along with the creation of scientific insti-
tutions and the growth of a community of
those involved in activities that we would
today label “science and technology” went
the development of a formalized commu-
nication system. This became the second
major factor in building the demarcation
line around science and in shaping what
is understood as scientific expertise. From
a collection of narrative, nonstandardized
accounts of diverse scientific observations
written by the editor of the first scientific
journal, the system gradually evolved into
one where scientists wrote the accounts of
the empirical and theoretical considerations
themselves and where colleagues working
in similar domains were involved in decid-
ing about whether or not certain scientific

papers would be published (Bazerman,
1989). In that sense being part of this expert
community and publishing one’s findings in
the specialized journals were closely inter-
twined. Besides this phenomenon, one also
has to realize that scientific knowledge was
no longer transmitted by publicly showing
an experiment, but increasingly by reading
about the empirical observations of other
researchers. Thus, the empiricist processes of
knowledge production and the spatial sep-
arateness of the members of this nascent
community led to the problem of trust that
necessarily arises when some people have
direct access and others — the large majority —
only in a mediated way. Institutionalization
and the formation of a scientific commu-
nity gradually led to a professionalization
process: the notion “scientist” was coined
and career paths began to structure the field.

But changes did not take place only on the
institutional and social levels, but also on the
epistemic level. Implementing the notion of
objectivity, and claiming the universal valid-
ity of epistemic claims made by scientists
(once validated by the science system), did
also stress the fundamental difference and
superior quality of scientific knowledge as
compared to other forms of cultural knowl-
edge (Daston, 1992).

Along with these developments, scientific
expertise, the procedures through which
knowledge was produced as well as those
who were the producers of this knowledge,
gained social and cultural authority. This
meant that particular explanations and def-
initions of reality increasingly managed to
be established as more valid than others.
Although this role of the science system as
an expert system was exerted within society
only in rather informal ways in earlier peri-
ods, the 20th century witnessed a growing
intertwinedness among the scientific, eco-
nomic, and political systems.

This development explains partly why
science as a professional occupation moved
into the focus of sociologists’ interest. In a
first step the sociologist of sciences Robert
K. Merton developed in the 1940s his nor-
mative framework for the conduct of sci-
ence based on universalism, communalism,
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disinterestedness, and organized skepticism.
These norms were supposed to form a strong
basis for the construction of mutual trust and
professional identity (Merton, 1942/1973).
With these norms it seemed possible to draw
a clear line between what should be regarded
as professional, ethical practice and what
not. Though this approach became rather
influential, it simultaneously triggered rather
strong critique from the side of those soci-
ologists who turned away from an idealised
picture of consensus among scientists and
instead became preoccupied with studying
scientific debate and disagreement (Mulkay,
1976). They conceptualised science much
more as a practice and culture and showed
the ambiguities and the continuous shifts in
what is regarded as widely acceptable in pro-
fessional terms. However, in spite of the the-
oretical and empirical weakness of describ-
ing science in terms of norms, the norms
themselves retain rhetorical support among
many scientists.

Scientific expertise in many ways became
an important resource in rethinking and
developing contemporary societies. How-
ever, at the same time a growing ambivalence
toward this exclusive and exclusionary role
played by scientific expertise and by scien-
tific experts can also be witnessed. Today the
question is posed increasingly about whether
or not the demarcation of science from other
forms of knowledge is sufficient for justi-
fying the hierarchy that was automatically
assumed between these forms of knowl-
edge. Claims for more public participation
and arguments that other forms of expertise
should gain more weight, once societal deci-
sions have to be taken, are but one rather
visible consequence of this growing ambiva-
lence towards the exclusive role of scientific

expertise (Wynne, 1995).

An Ethnographical Approach to Expertise:
Science as Practice

Complementing the processes of bound-
ary drawing and differentiation, which we
have just described, it is also necessary to
see how this newly created space for sci-
ence was allowed to develop and refine pro-

cedures through which knowledge, on the
basis of which expertise can be claimed, is
produced. Through taking an ethnographic
look at the way life in laboratories is orga-
nized, we have come to understand the sci-
entists’ repertoire of possible actions within
the laboratory, and how they build their
arguments and impose certain views of the
physical world (Knorr-Cetina, 1981; Latour
& Woolgar, 1979/1986 (see also Clancey,
Chapter 8)). We have learned that the labo-
ratory is more than the place where empir-
ical work is conducted and where organi-
zational as well as social structures become
visible, but that it is precisely a hybrid
manifestation of all of them. Laboratories
are places where both the objects of sci-
ence, those entities that are to be investi-
gated, as well as the subjects (the scientists,
lab-assistants, etc.) are being reconfigured,
where both do not exist in any “pure” form,
but are defined by each other and by the
spatial and temporal setting in which they
are bound. These studies have tried to break
with the asymmetry of the social and the
natural, implicitly assumed in traditional
descriptions of science, and rather convinc-
ingly show the inextricable linkage between
the epistemic production of science and the
social world. These investigations hinted at
the idea that there was no fundamental
epistemic difference between the pursuit of
knowledge and that of power, and that much
of what happened epistemologically in a lab
was due to complicated negotiation proce-
dures that also involve technical, social, eco-
nomic, and political aspects. Furthermore,
the use of particular techniques of repre-
sentation had an important impact on the
way expertise was shaped; that is, although
science would claim universal validity, local
laboratory cultures would play an impor-
tant role, and “facts” needed long construc-
tion and acceptance procedures and were
not simply unveiled.

Scientific expertise is thus not something
easy to delimit or to clearly define, but it is
always a temporarily confined outcome of
certain constellations. In that sense the ten-
sions between the role of individual com-
petences and the image of science as a
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collective endeavor become visible in the
laboratory. It is the individual that con-
tributes its creativity and intellectual capac-
ities, while at the same time the collective is
the setting in which research has to be real-
ized, procedures and outcomes have to be
negotiated, and results validated.

Scientific Expertise From a Gender
Perspective

The third perspective from which the cre-
ation and performance of scientific exper-
tise/experts has to be considered is that of
gender relations. Two aspects appear to be of
particular relevance. The first concerns the
question of scientific careers (Zuckerman,
Cole, & Bruer, 1991) and the fact that women
— even though they now have had access
to academic institutions for more than 100
years — are still largely underrepresented in
the group of scientific experts, at higher lev-
els in particular. This fact holds even though
numerous actions have been taken on the
policy level, both nationally and internation-
ally, over recent years in order to improve
the situation. Without wanting to claim that
women can be regarded as a homogeneous
group, one that would necessarily act and
need to be considered in standardized ways,
it has so far remained unclear in what insti-
tutional environment — working conditions,
daily practices, and policies — women could
attain significant opportunities to perform in
scientific careers. Drawing on studies of the
historical dimension of this exclusion pro-
cess (Schiebinger, 1989), it becomes obvi-
ous how strongly scientific expertise and
the expert role was and is intertwined with
power relationships within society (Rose,
1994; Haraway, 1989). In that sense “keep-
ing women (or any other group) out of sci-
ence” would also mean keeping the power
over those societal domains where scientific
expertise plays an important and shaping
role.

Second, gender has an impact also on the
epistemic level and thus on what counts
as expertise and how it takes shape. The
very way in which the universality and
objectivity of scientific knowledge was, and

partly still is, claimed has been put in ques-
tion by feminists from the 1980s onwards.
In their view, behind the very concept of
objectivity lies the idea of the “sacrifice of
the self for the collective,” thereby, deliv-
ering knowledge that would go far beyond
the individual standpoint and could make
more powerful and far-reaching claims for
validity. However, the fact was “overlooked”
that these “collectives” represented possi-
ble standpoints only in a rather selective
way, namely, by excluding female actors to
a large degree (Keller, 1985). Recent exam-
ples, such as the case study on the way grants
were attributed by a medical research coun-
cil in Sweden, as well as the MIT report
on the difficult position of women scientists
in this elite institution, clearly suggest the
multiple and subtle mechanisms and values
that implicitly define not only who is to be
regarded as a scientific expert, but also what
kind of scientific expertise is worthy of sup-
port (Wenneras & Wold, 1997; Members of
the first and second Committees on Women
Faculty in the School of Science, 1999).

Experts, Elites, and Political Power

The existence of experts and expertise plays
an important role in the constitution and
functioning of elites. There is no standard
definition of “elite” in social science. But cur-
rent definitions generally have some core fea-
tures in common:

* Elites are small groupings of persons who
are endowed with a high degree of poten-
tial power.

¢ This power may be due to the tenure of
a formal position within an organization,
or it may be due to the “charisma” of a
person.

* Being a member of an elite entails suc-
cessfully passing through a process of
selection (Carlton, 1996; Dogan, 1989).

The notion of “elite” has been introduced
by the three Italian classics of sociology,
Pareto (1935), Mosca (1939), and Michels
(1915), as an alternative concept to Marxist
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egalitarian concepts. With reference to the
ancient idea of aristocracy (aptotogc = the
best), Pareto defined elites as those who are
most capable in any area of activity (19353,
§ 2026 et seqq.). This ideal type defini-
tion of elite has a direct link to the notion
of expertise and experts. But in present-
day definitions of “elite,” the emphasis is
placed on power, not on excellence (Etzioni-
Halevy, 2001). The power of elites is based
on the possession and/or control of various
resources or “capitals.” As Bourdieu (1984)
puts it,

economic capital: money; any tradable
property; means of production.

social capital: tenure of leading posi-
tions in organizations; being inter-
locked in social networks supplying
informal support (Granovetter, 1973);
(privileged) access to institutions of
training, sources of information, etc,;
reputation.

human capital: any esteemed knowl-
edge and ability; charisma, ambition,
stamina, etc.

We know three main historic mechanisms
of transferring elite positions from one gen-
eration to the next: heredity, charisma, and
merit (Weber, 1979). Charisma (xaptoua)
means “gift out of (divine) favor” and thus
a qualification that cannot be generated sys-
tematically by training. Mainly in the sphere
of politics, it remains a source of legitimiza-
tion alternative to expertise, but in mod-
ern democracies its function is restricted to
being a (populist) ferment in the process of
political decision making. In the course of
history the complexity of societies increased,
and the skills needed for adequate gover-
nance and economic success grew more and
more demanding and specialized. Hence, for
lack of selectivity towards skills, the princi-
ple of heredity in elites became increasingly
inappropriate and has largely been replaced
by a principle of merit, mainly based on
expertise (Elias, 1982).

In the course of rationalization of gov-
ernmental and economic functions, experts
try to monopolize the access to their respec-

tive field of activity by founding new profes-
sions. Professionalization in this strong sense
means that a group of experts claims juris-
diction over the skills needed to be duly
qualified to practice in the respective field.
In cooperation with state authorities, they
aim to transform their claims into a legal
restriction of access to the respective field
of activity for people who have undergone a
certain vocational training, accounted for
by formal credentials. In short, groups of
experts strive to install mechanisms of social
inclusion and exclusion to protect certain
privileges against potential competitors.
Rationalization thus brings about a shift
from collective mechanisms of social clo-
sure — that is, social exclusion on the basis of
race, gender, religion, ethnicity, or language —
to individual mechanisms of social inclusion
and exclusion as a result of individual per-
formance in standardized competitions on
the basis of formal equality of opportunities
(Murphy, 1988). This shift towards a prin-
ciple of merit changes the rules of repro-
duction of social standing within families:
Parents who hold an elite position due to
professional expertise cannot bequeath this
status directly to their children. They can
only provide cultural capital that matches
the requirements of the educational system
and also mobilize financial and social capital
to improve the starting conditions of their
offspring. Statistically, these mechanisms of
reproduction of elite positions due to exper-
tise are still quite successful (Bourdieu, 1984,
and plenty of subsequent studies based on
this classic), but in many cases they fail — the
link between the social standing of parents
and that of their children is no longer deter-
ministic as it was to a large extent in pre-
modern societies, but it has grown stochas-
tic with culturally specific biases. Thus, the
safeguarding of privileges usually associated
with elite positions based on expertise has
become two-stage: families try to reproduce
access to any field of distinguished exper-
tise in their children, and groups of experts
try to establish and have legally protected
privileges by placing emphasis on the func-
tional importance of their services for clients
and society as a whole. It is characteristic
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for modern societies that these two contexts
of reproduction are completely independent
of each other. This disentanglement brings
about an increase in societal rationality. It
makes it possible for children of experts, who
want to reproduce the parental expert sta-
tus, not to be forced to choose the same
field of expertise as their parents, but the
field they are most talented for. This, on the
other hand, allows for higher selectivity in
the staffing of elite positions. It fuels compe-
tition among aspirants and thus aggravates
the problem of reproduction of high social
status in families.

In order to get a deeper insight into these
structures, it is adequate to go back to some
postulates of the Enlightenment and the
French Revolution that amplified the func-
tional importance of expertise, namely,

e Perfectability of societies: social struc-
tures are not an inalterable fate, but may
be the subject of well-directed moulding
through progress in each field of human
activity.

* Democracy: as a precondition of demo-
cratic control, governments and bureau-
cracies are accountable to the public for
their settlement of public affairs.

Merit principle: privileges need legit-
imization through outstanding achieve-
ments in a field of activity.

* Equal opportunities: children should
have equal access to all educational insti-
tutions regardless of their social back-
ground, and their advancement within
these institutions should depend exclu-
sively on their achievements.

As social developments since the 18th
century show, there is a conflict between
the first two postulates: The idea of per-
fectability of human affairs was a stimulus —
inter alia — for exceeding expansion and dif-
ferentiation of expertise and its application.
But as expertise is not easily comprehensi-
ble for lay citizens, democratic control of the
expanding activities of experts in contempo-
rary societies is more questionable than ever
(Feyerabend, 1978; Etzioni-Halevy, 1993).
On the other hand, as long as elites as a

whole respond more or less to the demands
of the public, discontent with the state of
society remains a phenomenon of individu-
als and marginalized anomic groups and does
not give rise to upheavals apt to overthrow
the social order (Etzioni-Halevy, 1999). In
order to maintain the capability to meet
public demands and an equilibrium between
public and particular interests, elites have to
admit talented members of the nonelite and
to dispose of those doing damage to their
reputation by incapability, violation of pub-
lic morality, and excessive parasitism on pub-
lic goods. This process of self-purification
is called “circulation of elites” (Kolabinska,
1912), and it is particularly characteristic for
American elites (Lerner, Nagai, & Rothman,
1996).

The emergence of counter-elites: Soci-
eties have to cope with unintended unde-
sirable side effects of human activities and
with newly emerged natural dangers. In
many cases single experts or small groups
of experts first anticipate or perceive such
a problem, make research on it, and try to
initiate public discussions. But as it is hard
to call public attention to displeasing things,
such problem awareness normally remains
confined for a long time to small circles
of specifically interested or heavily affected
people. The issue will grow into a matter
of public concern and an item of the polit-
ical agenda only if it is picked up by the
mass media — most frequently on the occa-
sion of an event apt to be scandalized. Seek-
ing means for dissemination of their pre-
monitions, experts may try — and indeed
have often tried — to incite and lead a social
movement or to support an already existing
social movement by supplying expertise and
expert respectability. In the case in which an
issue passes successfully through such a pro-
cess, marginalized views become common
sense, and formerly nameless or even ill-
reputed experts may grow respectable and
gain fame. During periods of controversy
the apologist experts constitute a counter-
elite to established elites that are still reluc-
tant to recognize the issue as a problem or
the solutions recommended. Counter-elites
play a decisive role in the generation of
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cultural change in modern societies and as
an element of their checks and balances.
If the issue as a matter of public concern
gets undisputable and its solutions standard-
ized, the counter-elite becomes a new estab-
lished elite, and parts of old elites may be
forced to resign (Imhof & Romano, 1994).
A prominent example of the long latency of
a matter in circles of experts is ecology and
the “green issue.” The environmental move-
ment and subsequent social change created
the demand for environmental expertise to
grow rapidly and provided a basis for a new
elite of risk professionals (Dietz & Rycroft,
1987).

On a global level the interplay between
political, bureaucratic, and military elites
of different states and the economic elites
of transnational corporations promotes pro-
cesses of globalization and the increase
of societal complexity (Bornschier, 198,
1996). The prosperity of the members of
political, bureaucratic, and military elites
depends on the success of the economies
in their countries, and this success in turn
depends on the degree of legitimacy of the
social order, that is, on the extent to which
the social order meets the needs of the citi-
zens and fosters or hampers their vocational
capabilities and achievement motivation. A
prominent example of a pact of bureau-
cratic and economic elites is the constitution
of the unified market in Europe (Nollert,
2000): The plans for this giant project were
generated chiefly by expert bureaucrats of
Brussels, that is, by an expert elite whose
members have no or only very indirect
democratic legitimization, whereas the role
of the democratically legitimized European
Council remained more or less confined to
formal approval of already elaborated plans.

The coherence of plans and public
projects may increase if they are worked
out by experts without the fear of being
voted out of their position. A disadvan-
tage of purely expert-driven projects is their
tendency to evolve too far from common
sense and to jeopardize themselves through
insufficient responsiveness to public con-
cerns and objections. This example may be
taken as illustration for a general problem

in the evolution of modern state societies:
The institutional frame of modern societies
has grown so widely ramified and differen-
tiated that only experts can overview its
parts in full complexity — each expert able
to focus on only one small section — and
propose advancements. Therefore, contem-
porary states are forced to cede a great por-
tion of institutional change to experts. This
makes democratic engagement and control
difficult (Turner, 2001), and in parts of the
society it entails alienation and disorienta-
tion that may result in social unrest. It is
impossible to foretell what this kind of social
evolution will bring about in the long run,
in particular with respect to the stability of
societies, an area where the notion of exper-
tise has its roots. But there is little doubt
that experts and expertise will be highly in
demand as long as modern societies keep
evolving towards higher complexity, as they
have done in recent centuries — despite the
fact that there have always been antimod-
ernist movements that challenge the role of
expertise and experts in society by trying to
revert to simpler structures of understanding
and control, such as faith-based ones.
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Introduction

Expertise is not just about inference applied
to facts and heuristics, but about being a
social actor. Observation of natural settings
begins not with laboratory behavioral tasks —
problems fed to a “subject” — but with how
work methods are adapted and evaluated by
experts themselves, as situations are expe-
rienced as problematic and formulated as
defined tasks and plans. My focus in this
chapter is on socially and physically located
behaviors, especially those involving conver-
sations, tools, and informal (ad hoc) interac-
tions. How an observer engages with practi-
tioners in a work setting itself requires exper-
tise, including concepts, tools, and methods
for understanding other people’s motives
and problems, often coupled with methods
for work systems design.

By watching people at work in everyday
settings (Rogoff & Lave 1984) and observ-

ing activities over time in different cir-
cumstances, we can study and document
work practices, including those of proficient
domain practitioners. This chapter intro-
duces and illustrates a theoretical framework
as well as methods for observing work prac-
tices in everyday (or natural) settings in a
manner that enables understanding and pos-
sibly improving how the work is done.

In the first part of this chapter, I explain
the notion of work practices and the his-
torical development of observation in nat-
ural settings. In the middle part, I elabo-
rate the perspective of ethnomethodology,
including contrasting ways of viewing people
and workplaces, and different units of analy-
sis for representing work observations. In the
final part, I present methods for observation
in some detail and conclude with trends and
open issues.

What are Work Practices in
a Natural Setting?

Every setting is “natural” for the people who
frequent it. A laboratory is a natural work
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setting for some scientists, whereas expe-
dition base camps are natural for others.
The framework provided here is intended
to be applicable to any setting, includ-
ing school playgrounds, churches, interstate
highways, and so on. But we focus on
workplaces, where people are attempting to
get some work done, for which they have
been prepared, and have sufficient expe-
rience to be acknowledged as experts by
other people with whom they interact. This
can be contrasted with studies of every-
day people being expert at everyday things
(e.g., jumping rope, car driving) or events
purposely arranged by a researcher in a
laboratory.

In studying natural settings, one views
them broadly: Consider a teacher in a school
within a community, not just a classroom.
Seek to grasp an entire place, with its nested
contexts: Rather than focusing on a physi-
cian in a patient exam room, study the clinic,
including the waiting room.

Heuristically, one can view an expert’s
performance as a play, identifying the stage,
the “acts,” roles, and the audience. But also
view the play as having a history, whose
nature is changing in today’s performance:
What are the actors’ long-term motives?
How is this performance challenging or
influenced by the broader community of prac-
tice (Wenger 1998) (e.g., other clinics and
nurses)?

Also inquire more locally about the
chronology and flow of a performance: How
do people prepare, who assists them (think
of actors), how do they get information
about today’s work, when and where do
they review and plan their work, how are
events scheduled? Look for informal places
and off-stage roles — backrooms and prepara-
tion areas, dispatchers, janitors, and support
personnel. All of this is part of the exper-
tise of getting a job done, and multiple parts
and contributions need to be identified if the
fundamental question about work is to be
answered: What affects the quality of this
performance? What accounts for its success?
As a heuristic, to capture these contextual
effects, one might frame a study as being

“a day in the life” of the people — and that
means 24 hours, not the nominal work day.
Thus, a study of work practices is actu-
ally a study of a setting; this context makes
the observed behavior understandable. For
example, consider understanding clowns:

If we had a film of a clown doing som-
ersaults, and nothing else (i.e., we knew
nothing about circuses, about the history of
clowns and so on), then the film would not
tell us what we need to know to make sense
of what the clown was doing. . . . One would
need to know something about how they
are part and parcel of circuses, and how
their somersaulting is viewed [by many
observers] as a kind of sentimental self-
mockery. (Harper 2000, pp. 244-245;
attributed to Gilbert Ryle)

To understand a setting, it is useful to
view all workers (not just performers on
stage) as social actors. When we say that
work is socially recognized as “requiring spe-
cial skills or knowledge derived from exten-
sive experience” (Hoffman, 1998, p. 86), we
mean that people are visibly demonstrat-
ing competency, in how they make inter-
pretations, conduct business, and produce
results that are “recognizably accountable”
(of agreeable quality) to institutional and
public audiences (Heritage 1984; Dourish &
Button 1998). This perspective has the dual
effect for expertise studies of considering the
worker as an agent who, with other agents,
coconstructs what constitutes a problem to
be solved and how the product will be eval-
uated. Methods for applying this theoreti-
cal perspective, called ethnomethodology, are
presented in this chapter.

Observing people in a natural setting is
commonly called fieldwork. Besides watch-
ing and recording and asking questions, field-
work may include interviewing, studying
documents, and meeting with the people
being studied to analyze data together and
present findings (Forsythe 1999, p. 128).
Fieldwork is most often associated with the
broader method of study called ethnogra-
phy (Spradley 1979; Fetterman 1998 Harper
2000, p. 239), literally, the written study
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of a people or culture. Neither fieldwork
nor ethnography are specific to any disci-
pline. Originally associated most strongly
with anthropology, the methods today
are commonly used by linguists, sociolo-
gists, computer scientists, and educational
psychologists.

The actual methods of observation —
spending time in a natural setting and
recording what occurs — may at first appear
as the defining characteristic of an ethno-
graphic study, but the difficult and less obvi-
ous part is being able to understand work
practice. For example, outsiders are often
unaware of the inherent conflicts of a work
setting (e.g., to physicians, dying people are
a source of money; to police, crime statis-
tics a source of political trouble), which limit
what can be done, making it necessary to cre-
atively interpret procedures and regulations.

This chapter focuses on how to see what
is happening, how to apply ethnomethodol-
ogy concepts to analyzing everyday actions.
Starting the other way around — with cam-
era at hand and a poor theoretical back-
ground — could be like bringing an aquarium
fish net to the deep sea, collecting a hodge-
podge of anecdotes, narratives, and interest-
ing photographs, with little understanding of
people’s practices (Button & Harper 1990,
p. 267). Furthermore, a planned analytic pro-
gram is important when studying work prac-
tice for design, “otherwise observations can
be merely invoked at will for particular pur-
poses such as, for example, to legitimize
design decisions already made” (p. 267).

An observational study is itself modu-
lated by the observer’s purpose and relation
to the organizational setting. Intending to
transform the setting (e.g., as a consultant)
requires engaging as an observer in a partic-
ular way, not merely recording and note tak-
ing. A helpful, reflective activity called par-
ticipatory design (Greenbaum & Kyng 1991,
p. 7; Beyer & Holtzblatt 1998) involves nego-
tiating and codiscovering with the workers
what is to be investigated (e.g., setting up a
“task force group”; Engestrém 1999, pp. 71—
73). In settings such as hospitals and business
offices, this developmental perspective com-

monly focuses on software engineering and
organizational change.

Historical and Contemporary
Perspectives

This section reviews how observation in
natural settings developed and was shaped,
especially by photographic tools, and how
it relates to the psychological study of
expertise.

Scientific Observation in Natural Settings

In studies of culture, surveying “informants”
on site goes back to the earliest days of 19th-
century anthropology (Bernard 1998, p. 12).
Several articles and books provide excellent
summaries of the theoretical background
and methods for observation in natural set-
tings, including especially Direct Systematic
Observation of Behavior (Johnson & Sackett
1998) and Participant Observation (Spradley
1980; Dewalt & Dewalt 2002).

As the ethnomethodologist stresses,
observation in natural settings is inherent in
social life, for it is what people themselves
are doing to organize and advance their
own concerns. But perhaps the tacit, uncon-
trollable, and mundane aspect of everyday
life led psychologists to set up experiments
in laboratories and anthropologists to set
up camp in exotic third-world villages.
Moving studies of knowledge and expertise
to modern work settings developed over a
long period of time, starting with cognitive
anthropologists and socio-technical analysts
(Emery 1959), and progressing to the
“Scandinavian approach” to information
system design (Ehn 1988; Greenbaum &
Kyng 1991). But today’s methods of obser-
vation began with the invention of — and
motivations for — photography.

Visual Anthropology

Photographs and video are indispensable for
recording behavior for later study. The visual
record allows studying how people structure
their environment, providing clues about
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how they are relating to each other and
structuring their work life. Using photogra-
phy for close observation dates to the late
19th century. Eadweard Muybridge’s famous
early motion pictures (Galloping Horse
[1878], Ascending Stairs [1884]) demon-
strate the early motivation of using film to
study animal and human movements whose
speed or structure elude direct observation.

Margaret Mead and Gregory Bateson pio-
neered the use of film for capturing non-
verbal behavior. Their work was influen-
tial in treating photography as primary data,
rather than as only illustrations (El Guindi
1998, p. 472). Today the use of photo-
graphic methods is fundamental in observa-
tion of natural settings, and is termed video
ethnography or interaction analysis (Jordan
& Henderson 1995).

An integral part of any observational
study in a natural setting considers how
physical space, including furniture and
designed facilities, is used “as a specialized
elaboration of culture” (Hall 19606), called
proxemics. This study broadly relates ethol-
ogy (Lorenz 1952) to analyses of physical-
perceptual experience (e.g., kinesics, Bird-
whistell 1952), including “body language”
(Scheflen 1972), personal and public kinds
of space, nonverbal communication (Hall
1959), and culture differences. Using time-
lapse video, Whyte (1980; PPS 2004) studied
how people used public plazas at lunchtime,
a striking everyday application of proxemics
for architectural design.

Visual analysis considers posture, ges-
tures, distance and orientation of bodies,
territoriality, habitual use of space (e.g.,
movement during the day), relation of
recreational and work areas, preferences
for privacy or indirect involvement (open
doors), and so on. For example, referring to
Figure 8.1, how would you group the peo-
ple, given their posture and behavior? What
activities occur in this space? What do body
positions reveal about people’s sense of tim-
ing or urgency? Even a single image can
reveal a great deal, and will provide evidence
for broader hypotheses about relationships,
complemented by living with these people
for several weeks.

Figure 8.1. “The area between the tents” at the
Haughton-Mars Base Camp 1999.

The Development of Natural Observation
in Expertise Studies

Analysts seeking improved efficiency in pro-
cedures and designing automation stud-
ied workplaces throughout the 20th cen-
tury. Developmental psychology primarily
focused on schools, whereas organizational
learning (Senge 1990) chose business set-
tings. Computer scientists brought domain
specialists into their labs to develop expert
systems in the model-building process called
knowledge acquisition (Buchanan & Shortliffe
1984). Human-factors psychologists took up
the same analytic concepts for decompos-
ing work into formal diagrams of goals
and methods, called cognitive task analysis
(Vicente 1999), and characterized decision
making as probabilistic analyses of situations
and judgmental rules (Chi et al. 1988). At
the same time, social scientists were being
drawn by colleagues designing computer
systems, motivated largely by labor forces
in Europe (Ehn 1988), forming subfields
such as business anthropology and work-
place studies (Luff et al. 2000).

By the 199os, industrial engineers and
social scientists already in the workplace
were joined by computer scientists and psy-
chologists, who had transitioned from labo-
ratory interviews and experiments to “design
in the context of use” (Greenbaum & Kyng
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1991). The work of studying knowledge and
learning moved to everyday settings such as
supermarkets (Lave 1988), insurance offices,
and weather bureaus (Hoffman et al. 2000).
The discipline of human-computer interac-
tion (HCI) became a large, specialized sub-
field, a consortium of graphics artists, social
theorists, psychology modelers, and software
engineers (Nardi 1996; Blum 1996; Kling &
Star 1998).

Broadly speaking, HCI research has pro-
gressed from viewing people as computer
users —thatis, asking questions such as “What
happensif people are in the loop?” — to view-
ing people, computers, documents, facilities,
and so on as a total system, and understanding
the processes holistically. In some respects,
this approach began with socio-technical
systems analysis in the 1950s-1970s (Corbet
et al. 1991, p. 9ff). Hutchins (1995) provides
especially well-developed examples of how
tools, interfaces, and distributed group inter-
actions constitute a work system.

Expertise in Context: Learning to See

Observing and systematically studying a
work place is sometimes treated as easy by
non-social-scientists, who might perform the
work sketchily or not actually analyze prac-
tices (Forsythe 1999). The spread of the
anthropological and social perspectives to
cognitive science was at first limited, at best
shifting the analysis to include the social
context. For example, only one chapter in
Expertise in Context (Feltovich et al. 1997)
explicitly involved an observational study of
a natural setting (Shalin’s video analysis in a
hospital). Ericsson and Charness used diaries
for studying violinists, without investigating
their home setting. Other researchers con-
sidered experts as socially selected (Agnew
et al. 1997) and more broadly serving and
part of market, organization, or commu-
nity networks (Stern 1997); or viewed exper-
tise as part of cultural construction (Collins
1997, Clancey 1997).

An edited volume from a decade ear-
lier, The Nature of Expertise by Chi et al.
(1988), focused even more narrowly on
mental processing of text: Documents were

provided to subjects to read, to judge, to
type, or learn from. Expertise was viewed
not about competence in settings (i.e.,
situated action), but decision making, rea-
soning, memory retrieval, pattern match-
ing — predominantly aspects of the assumed
internal, mental activity occurring in the
brain. For example, a study of restaurant
waiters (p. 27) was reduced to a study of
memory, not the “lived work” of being a
waiter. A study of typing concerned timing
of finger movements, nothing about office
work. Of the twelve studies of experts,
only one included “naturalistic observation”
to “fashion a relatively naturalistic task”
(Lesgold et al. 1988; p. 313), namely, dictat-
ing X-ray interpretations.

This said, one of the most influential anal-
yses of the contextual aspects of behav-
ior, Suchman’s (1987) Plans and Situated
Actions, also did not involve the study of
practice. Suchman studied two people work-
ing together who had never used a photo-
copier before (p. 115) — a form of puzzle solv-
ing in which a predefined task is presented
in “the real world” (p. 114). Suchman’s study
is an example of ethnomethodological analy-
sis because it focuses on mutual, visible con-
struction of understanding and methods, but
it is not carried out using the ethnographic
method (Dourish and Button 1998, p. 406)
because this was not a study of established
practices in a familiar setting.

In summary, a participatory design pro-
ject uses ethnography to study work prac-
tice, which may be analyzed from an
ethnomethodological perspective (Heritage
1984). More generally, ethnography may
involve many other analytic orientations,
emphasizing different phenomena, topics,
and issues (Dourish & Button 1998, p. 404).
Ethnographic observation involves a rigor-
ous commitment to confronting the worlds
of people as they experience everyday life,
to understand how problematic situations
actually arise and are managed. Workplace
studies, contrasted with the study of knowl-
edge and experts in the 1970s and 1980s (Chi
etal. 1988), signify a dramatic change in how
expertise is viewed and studied, often with
entirely different motivations, methods, and
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partnerships, and having a significant affect
on the design of new technologies.

Work Systems Design Project Examples

Here I present two representative exam-
ples of work systems design projects to illus-
trate the relation of methods and the results
achieved.

A three-year ethnographic study of
a reprographics store was conducted to
improve customer service (Whalen et al.
2004)." The data were collected in three
phases. First, the researchers made ethno-
graphic observations, shadowing and inter-
viewing employees as they worked. Sec-
ond, the team collected over 400 hours
of video recordings in the store from
multiple simultaneously recording cameras.
The videotapes were digitized and divided
into distinct episodes, consisting of more
than 500 customer-employee interactions,
some of which were transcribed and ana-
lyzed. Finally, three research team mem-
bers became participant observers in the
stores, working as employees, serving cus-
tomers, and operating the printing and copy-
ing equipment.

The study resulted in the development
of a “customer service skill set,” a set of
web-based instructional modules designed
to raise employees’ awareness of the orga-
nization of customer-employee interactions.
Topics include how to listen to what the cus-
tomer wants during initial order taking, how
to talk about price, and the importance of
taking the time to review the completed job
with the customer. The modules were co-
developed by the research team and six store
employees who met once a week for two
months. For example, the common question
“When do you need it?” is practically unan-
swerable by the customer because they don’t
know the work load and scheduling con-
straints of the store, so they reply, “When
can you have it?” The employees were asked
to experiment with ways of opening up the
discussion about due time (e.g., “Is this an
urgent job?” or “Would you like to pick this
up tomorrow afternoon?”), and they noticed
auseful change in customer responses. These

analyses inform further reconsideration of
the burden placed on customers in justify-
ing the need for “full service” and the deli-
cate balance of providing assistance to “self-
service” customers.

The second example illustrates system-
atic design and adaptation to most aspects
of a work system — organization, facili-
ties, processes, schedules, documents, and
computer tools. For three-and-a-half years,
NASA Ames’ researchers worked closely
with the Mars Exploration Rover (MER)
science and operations support teams at
the Jet Propulsion Laboratory, in Pasadena,
California. The project included the design
and training phase of the mission (start-
ing January 2001), as well as the surface
operations phase that began after the suc-
cessful landing of two rovers on the Mar-
tian surface (January 2004). Observation
focused on the interactions between the
scientists, computer systems, communica-
tion network (e.g., relay via Mars satellites),
and the rovers, using ethnography to under-
stand the successes, gaps, and problem areas
in work flows, information flows, and tool
design in operations systems.

Research data included field notes, mis-
sion documents and reports, photographs,
video, and audiotape of the work of mis-
sion participants. Two to four researchers
were present during all of the premission
tests (2001—2003), all but one of the sci-
ence team’s twice-yearly meetings (2001—
2003), and the majority of the science team’s
weekly conference calls. Learning the intri-
cacies of the rover instruments and their
operation was necessary to understand the
telerobotic work. Ongoing findings in the
form of “lessons learned” with recommenda-
tions for improving mission work processes
were presented to operations teams several
times each year. Data analysis focused on the
learning of the science team as a work prac-
tice developed that moved the daily rover-
operations plan from team to team across the
three-shift mission timeline. The researchers
identified and categorized types of informa-
tion and working groups, and defined work
flows, communication exchanges, scien-
tists’ work practice and scientific reasoning
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process, and the interactions of work prac-
tice between scientists and rover engineers.
Over time many scientists and managers
became informally involved in assisting the
observation and documentation process and
refining design recommendations.

The researchers developed a naming con-
vention and ontology for objects on Mars,
a prioritization scheme for planning rover
activities, and a method of documenting
the scientific intent of telerobotic opera-
tions to facilitate communication between
operations shifts and mission disciplines.
They trained MER scientists in these pro-
cedures and associated tools during simu-
lated missions. During the mission in 2004,
two researchers moved to Pasadena; six
researchers rotated to cover the shifts that
moved forty minutes later each day in syn-
chrony with local Mars time. The team
then developed operations concepts for an
“extended mission phase,” during which
scientists worked from their home cities,
and rover planning was compressed and
simplified to reduce work on nights and
weekends.

Overall, this work systems design project
helped define and enhance the telerobotic
scientific process and related mission sur-
face operations, including design of facili-
ties for science meetings. Researchers con-
tributed to the design of four computer
systems used for rover planning and scien-
tific collaboration that were being developed
simultaneously by NASA Ames colleagues
and JPL. The MER work systems design and
the methods employed are influencing oper-
ations concepts and system architectures for
subsequent missions.

Ethnomethodology’s Analytic
Perspective

In this section, I explain how the “method-
ology” being studied in a workplace is not
just a technical process for accomplishing a
task, but incorporates social values and cri-
teria for judging the quality of the work.
This idea originated in Garfinkel’s discovery

in the mid-1950s of jurors’ “methodological”
issues:

...such as the distinction between “fact”
and “opinion,” between “what we're enti-
tled to say,” “what the evidence shows,” and
“what can be demonstrated” . .. These dis-
tinctions were handled in coherently orga-
nized and “agree-able” ways and the jurors
assumed and counted on one another’s
abilities to use them, draw appropriate
inferences from them and see the sense of
them . . . common-sense considerations that
“anyone could see.” (Heritage 1984, p. 4)

Ethnomethodology thus emphasizes the
commonsense knowledge and practices of
ordinary members of society, as they “make
sense of, find their way about in, and act on
the circumstances in which they find them-
selves” (p. 4). However, formalizing these
assumptions, values, and resulting proce-
dures is not necessarily easy for people with-
out training (Forsythe 1999).

Ethnomethodology has led researchers
to reconceive how knowledge and action
are framed, “wresting . . . preoccupation with
the phenomenon of error” prevalent in
human factors research (Heritage 1984). The
focus shifts to how people succeed, how
they construct the “inherent intelligibility
and accountability” of social activity, placing
new emphasis on the knowledge people use
“in devising or recognizing conduct” (p. 5).
Button and Harper (1990) provide a cogent
example about how “Decisions about what
crimes are reported by police are intimately
tied up with questions of what is practical for
the reporting officer and what is in the inter-
ests of the police organization as a whole”
(p- 275).

Contrasted with technical knowledge
(Schon 1987), this aspect of work methods
is reflective and social, concerning how one’s
behavior will be viewed, through under-
stood norms and social consequences. Eth-
nomethodology thus provides a kind of
logical, systemic underpinning to how activ-
ity becomes coordinated — “how the actors
come to share a common appraisal of their
empirical circumstances” (Heritage 1984,
p. 305) — that is, the process by which they
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come to cooperate and their methods for
resolving conflicts.

The idea of “intelligibility and account-
ability” means that the work activity is
“organized so that it can be rationalized”
(Dourish & Button 1998, p. 415), that is,
so that it appears rational. For example,
the Mars Exploration Rover’s (MER) oper-
ations (Squyres et al. 2004) were planned
and orchestrated by the science team so the
exploration could be recognizable to oth-
ers in perpetuity as being science, especially
through the method of justifying instrument
applications in terms of hypothesis testing.
In practice, geologists will often just strike
a rock to see what is inside. In MER, the
application of the rock abrasion tool was
often explained within the group and to
the public as looking for something spe-
cific. As the mission continued on for many
months, the need for such rationalization
diminished, but as the scientists were bound
at the hip, with one rover to command (at
each site), they continued to justify to each
other why they would hit a particular rock
and not another — something that would be
inconceivable in their activity of physically
walking through such a site with a hammer
and hand lens. Thus, the practice of geology
changed during the MER mission to adapt
to the circumstances of a collective, his-
torical, public, time-pressured activity; and
production of accounts of what should be
demonstrably scientific action were adapted
to fit this situation (cf. Dourish & Button
1998, p. 416).

One must avoid a misconception that
technical knowledge is just being selectively
applied in social ways. Rather, what counts as
expertise — the knowledge required to iden-
tify and solve problems — reflectively devel-
ops within the setting, which Collins calls “the
mutual constitution of the social and con-
ceptual” (Collins 1997, p. 296). During the
MER mission, a cadre of scientists and engi-
neers capable of doing science with rovers
has developed new expertise and meth-
ods of working across disciplines in a time-
pressured way.

In summary, expertise is more than facts,
theories, and procedures (e.g., how to be a
geologist or policeman); it includes practi-

cal, setting-determined know-how in being
a recognizably competent social actor. Eth-
nomethodology reveals the reflective work
of constructing observable (nonprivate) cat-
egorizations (e.g., deciding which Mars rocks
to investigate). Thus, an essential task for
the outside observer is to learn to see the
ordered world of the community of practice:
“Human activity exhibits a methodical
orderliness . .. that the co-participants can
and do realize, procedurally, at each and
every moment. ... The task for the analyst
is to demonstrate just how they do this”
(Whalen et al. 2004, p. 6). The following
section provides some useful frameworks.

What People Do: Contrasting
Frameworks

Social-analytic concepts for understanding
human behavior in natural settings are con-
trasted here with information processing
concepts that heretofore framed the study of
knowledge and expertise (Newell & Simon

1972).

Practice vs. Process

Practice concerns “work as experienced by
those who engage in it” (Button & Harper
1990, p. 264), especially, how “recognizable
categories of work are assembled in the real-
time actions and interactions of workers”
(p. 264), memorably described by Wynn

(1991):

The person who works with information
deals with an “object” that is more diffi-
cult to define and capture than information
flow charts would have us imagine. These
show “information” in little blocks or trian-
gles moving along arrows to encounter spe-
cific transformations and directions along
the diagram. In reality, it seems, all along
the arrows, as well as at the nodes, that
there are people helping this block to be
what it needs to be — to name it, put it
under the heading where it will be seen as
a recognizable variant, deciding whether to
leave it in or take it out, whom to convey it

to. (pp. 56-57).
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Button and Harper (1996, p. 265) give the
example of people analyzing interviews:
“The coders would resort to a variety of prac-
tices to decide what the coding rules actu-
ally required of them and whether what they
were doing was actually (or virtually) in cor-
respondence with those rules.”

Practice is also called “lived work” — “what
work consists of as it is lived as part of orga-
nizational life by those who do it” (Button
& Harper 1996, p. 272). Practice is to be
contrasted with formal process specification
of what work is to be done. In the work-
place itself, processes are often idealized and
constitute shared values — “crimes should be
reported to the bureau as soon as possible”
(p. 277). Narratives that people record or
present to authorities cater to these avowed
policies or preferences, creating an inherent
conflict in the work system between what
people do and what they say they do. The
point is not just that the documents and
behavior may disagree, but rather, for exam-
ple, the records may reveal workers’ under-
standing of how their practices must be rep-
resented to appear rational.

Two fundamental concepts related to the
practice—process distinction are behavior—
function and activity-task. Process mod-
els (e.g., information processing diagrams)
are idealized functional representations of
the tasks that people in certain roles are
expected to do. Practice concerns chrono-
logical, located behaviors, in terms of every-
day activities, for example, “reading email,”
“meeting with a client,” and “sorting through
papers.” Activities are how people “chunk”
their day, how they would naturally describe
“what I am doing now.” Tasks are discovered,
formulated, and carried out within activities,
which occur on multiple levels in parallel
(Clancey 2002).

Putting these ideas together, one must
beware of identifying a formalized scenario
(cf. Feltovich et al. 1997, p. 117) with the
physical, interactive, social context in which
work occurs. The work context is fun-
damentally conceptual (i.e., it cannot be
exhaustively inventoried in descriptions or
diagrams) and dynamically interpreted, in
which the actor relates constraints of loca-
tion, timing, responsibility, role, changing

organization, and so on. Scenarios used for
studying expertise often represent an exper-
imenter’s idealized notion of the “inputs,”
and thus working a scenario may be more
like solving a contrived puzzle than inter-
acting with the flow of events that an actor
naturally experiences.

Invisible vs. Overt Work

Observing work is not necessarily as easy
as watching an assembly line. Work may be
invisible (Nardi & Engestrdm 1999, p. 2)
to an observer because of biases, because it
occurs “back stage,” or because it is tacit,
even to the practitioners. These three aspects
are discussed here.

First, preconceptions and biased methods
may prevent the ethnographer from seeing
what workers accomplish. For example, in a
study of telephone directory operators, the
researchers’ a priori “notion of the ‘canon-
ical call’ rendered the variability of actual
calls invisible and led to a poor design for
a partially automated directory assistance
system” (p. 3). A related presumption is
that people with authority are the experts
(Jordan 1992). For example, the Mycin pro-
gram (Buchanan & Shortliffe 1984) was
designed in the 1970s to capture the exper-
tise of physicians, but no effort was made
to understand the role of nurses and their
needs; in the study of medical expertise,
nurses were “non-persons”’ (Goffman 1969;
Star & Strauss 1999, p. 15).

The second aspect of invisibility arises
because “many performers — athletes, musi-
cians, actors, and arguably, scientists — keep
the arduous process of preparation for pub-
lic display well behind the scenes” (Star &
Strauss 1999, p. 21), which Goffman called
“back stage.” One must beware of violat-
ing autonomy or not getting useful informa-
tion because of members’ strategic filtering
or hiding of behavior (Star & Strauss 1999,
p. 22).

The third form of invisible work is tacit
“articulation work” — “work that gets things
back ‘on track’ in the face of the unexpected,
and modifies action to accommodate unan-
ticipated contingencies.” (Star & Strauss
1999, p. 10). These may be steps that people
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take for granted, such as a phone call to a
colleague, which they wouldn’t necessarily
elevate to being a “method.”

Participatory design handles the various
forms of invisible work by using ethnogra-
phy to identify stakeholders and then involv-
ing them in the work systems design project
(e.g., see the examples in Greenbaum &

Kyng 1991).

Members’ Documentation
vs. Literal Accounts

The production of documentation is part
of the lived work of most business, gov-
ernment, and scientific professions. To deal
with the nonliteral nature of documentation
mentioned previously, one should study the
activity of reporting “involved in sustaining
an account of the work as a formal sequen-
tial operation” (Button & Harper 1990,
p. 272) as a situated action with social func-
tions. For example, in Mars habitat simula-
tions (Clancey 2002, in press), one can learn
from daily reports what the crew did. But
one must also inquire how the reporting
was accomplished (e.g., contingencies such
as chores, fatigue, power failure, etc. that
made reporting problematic), what account-
ability concerned the crew (e.g., the public
image of the Mars Society; hence what was
emphasized or omitted), and why report-
ing was given such priority (e.g., to adhere
to scientific norms). What people write may
notbe what they actually did, and interviews
may present yet another perspective on Why
the reports even exist.

Managing Inherent Conflicts
vs. Applying Knowledge

One view of expertise is that people apply
knowledge to accomplish goals (Newell &
Simon 1972). Yet, goals are not simply the
local statement of a task, but relate to long-
term social-organizational objectives, such
as later “work load and responsibilities”
(Button & Harper 1996, p. 277). For exam-
ple, the chair of NASA’s Mission Manage-
ment Team during the Columbia mission
(which was destroyed on re-entry by wing
tiles damaged by broken tank insulation

foam during launch) didn’t classify foam
damage on the prior mission, STS-112 in
December 2002, as an “in-flight anomaly” —
the established practice. Doing so could have
delayed a subsequent mission in February
that she would manage (CAIB 2003, p.
138-139). Thus, a recurrent consideration
in how work is managed is “what-this-will-
mean-for-me-later-on” besides “what-can-I-
do-about-it-now.” The organizational con-
text of work, not just the facts of the case,
affects reporting a mishap event (Button &
Harper 1996, p. 277).

In summary, the view of rationality as
“applying knowledge” can be adapted to fit
natural settings, but the goal of analysis must
include broad organizational factors that
include role, identity, values, and long-term
implications. The expert as agent (actor,
someone in a social setting) is more than a
problem solver, but also an expert problem
finder, avoider, delegator, prioritizer, refor-
mulater, communicator, and so on.

We have now considered several con-
trasts between information processing and
social-analytic concepts for understanding
human behavior in natural settings. But
how does one apply an analytic perspective
systematically?

Unit of Analysis: The Principle of
Multiple Perspectives

A fundamental aspect of ethnography is to
triangulate information received from dif-
ferent sources at different times, including
reinterpreting one’s own notes in light of
later events, explicitly related to previous
studies and analytic frameworks (Forsythe
1999, pp. 127-128). In conventional terms,
to make a study systematic, one gathers data
to model the work from several related dif-
ferent perspectives:

¢ Flows: Information,

product

communication,

¢ Independent variables: Time, place, per-
son, document

* Process influences: Tool, organization/
role, facility, procedure
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To provide a suitable social framing and orga-
nization of these data categories, this sec-
tion suggests the following units of analysis:
activity system, temporality, and collectives.

Activity System

Activity theory (Leont’ev 1979) provides
essential analytic concepts for understand-
ing what is happening in a natural setting
(Lave 1988; Nardi 1996; Engestrom 2000).
Psychologically, activity theory suggests how
motives affect how people conceptually
frame situations and choose problem-solving
methods (Schén 1979). People broadly
understand what they are doing as identity-
related activities (e.g., “exploring an Arctic
crater as if we were on Mars”). Career, social,
or political motives and identities may influ-
ence how procedures are interpreted and
tasks enacted. Engestrom (1999) provides an
exemplary activity theory analysis of a hos-
pital setting.

Temporality: Phases, Cycles, Rhythm

A second unit of analysis is temporality:
How does the work unfold during the course
of a day or a week? Does it vary seasonally?
Is a given day typical? One might observe
an individual at different times and set-
tings, and look for disparities between inter-
views and what people say about each other
(Forsythe 1999, p. 138). An essential, recur-
rent organizing conception is the separating
of work into categories such as “‘someone-
now,” ‘me-when-I-can,” ‘what-is-mine,” and
‘everyone’s-concern’ to prioritise. .. work”
(Button & Harper 1996, p. 276). Thus,
expertise transcends how individual tasks are
accomplished, to involve how time is made
accountably productive.

Collectives

The third unit of analysis is the collective,
the people who are interacting in a setting,
as well as the conceptualized audience of
clients, managers, and the community of
practice. The collective might consist of peo-
ple who don’t directly know each other:
“The occupational community [of photo-

copy machine technicians] shares few cul-
tural values with the corporation; techni-
cians from all over the country are much
more alike than a technician and a sales-
person from the same district” (Orr 1990,
p. 70).

How is the study of a collective related
to individual expertise? Lave (1988) con-
trasts the view that culture is a collection of
value-free factual knowledge with the view
that society and culture “shape the partic-
ularities of cognition and give it content”
(p. 87). Thus, the study of culture is insepa-
rable from a study of how expertise is identi-
fied, developed, exploited, organized, and so
on. Orr’s study reveals that “The technicians
are both a community and a collection of
individuals, and their stories celebrate their
individual acts, their work, and their individ-
ual and collective identities” (p. 143), such
that storytelling has a social-psychological
function with many practical and institu-
tional effects.

Methods for Observation
in Natural Settings

In considering methods of observation, one
should not rush to the recording parapher-
nalia, but first focus on how the study is
framed, the nature of engagement of the
observer in the setting, and the work plan.
This section of this chapter surveys useful
handbooks, then summarizes key considera-
tions and methods.

Handbooks for Observing
Natural Settings

The following handbook-style guides are
suggested for learning more about how to
observe natural settings. These fall on a spec-
trum from observational science to rigorous
engineering design.

Handbook of Methods in Cultural Anthro-
pology (Bernard 1998) provides a balanced
treatment of the history and methods
of anthropology, with tutorial-style chap-
ters on epistemological grounding, partic-
ipant observation, systematic observation,
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structured interviewing, discourse and text
analysis, and visual analysis.

Design at Work: Cooperative Design of
Computer Systems (Greenbaum & Kyng
1991) is a primer of examples, theory, and
methods for participatory design. It repre-
sents especially well the Scandinavian per-
spectives that have defined change-oriented
observational studies of workplaces as a
morally driven, industrially funded, and the-
oretically grounded activity.

Contextual Design (Beyer & Holtzblatt
1998) may be used as a beginner’s
guidebook for conducting a “contextual
inquiry,” including how to observe and work
with customers (with unusually detailed
advice about how to conduct interviews);
how to model work (organizational flow,
task sequences, artifacts such as docu-
ments, culture/stakeholders, and physical
environment); and how to redesign work
(including storyboards, paper prototypes).

Cognitive Work Analysis (Vicente 1999)
provides another program for design-
ing computer-based information systems,
based on detailed mapping of information
flows, task constraints, and control pro-
cesses. This book presents the method-
ology and perspective of Jens Rasmussen
and his colleagues (Rasmussen, Pejtersen, &
Goodstein 1994): Work models must be
detailed for tool design, and hence obser-
vation must be systematically organized to
understand the domain (see also Jordan
1990). In particular, analysis of fields —
the physical-conceptual spaces for possible
action — is generalized from observations of
particular trajectories or behaviors in this
space (Vicente 1999, p. 179).

Framing the Study: Purpose, Genre,
Timing, and Biases

Every study of expertise occurs in its own
context, which shapes the observer’s inter-
ests, targeted product (a publication? a
design document?), and the pace of work.
Researchers therefore find it useful to have
a variety of different approaches that can be
adapted, rather than imposing one rigorous
method on every setting.

Observation of expertise in natural
settings has been undertaken as a scientific
endeavor (studying decision making, cre-
ativity, etc.); to develop training strategies;
or, typically, to redesign the workplace
by automating or facilitating the work
processes (Blomberg et al. 1993; Nardi &
Engestrém 1999; Jordan 1993, 1997; Ross
et al. Chapter 23).

Dourish & Button (1998) summarize the
relation of ethnography and ethnomethod-
ology to technological design, emphasizing
human-computer interaction. Luff Hind-
marsh, and Heath (2000) provide an
updated collection of detailed workplace
studies related to system design. More gen-
erally, workplace studies may be part of a
broader interest in organizational develop-
ment (Engestrédm 1999; Nardi & Engestrém
1999, P- 4)-

Before a study begins, one should make
explicit one’s interests, partly to approach
the work systematically, and partly to expose
biases so others may better evaluate and
use the results (e.g., provide a compara-
tive survey of related studies, Clancey in
press). Throughout a study, one should
also question conventional metaphors that
predefine what is problematic. For example,
the term “homelessness” could lead to focus-
ing on housing, rather than studying how
such people view and organize their lives
(Schén 1979). The underlying nature of a
setting may clarify as change is attempted
(Engestrom 1999, p. 78).

Observer Involvement

For many researchers, participant observa-
tion is the ideal way to study people, infor-
mally learning by becoming part of the group
and learning by watching and asking ques-
tions. But participant observation is not nec-
essary and may not be possible, for instance,
in highly technical or risky work such as air
traffic control (Harper 2000, p. 258).
Observation should be a programmatic
study (p. 240—241), with demonstrated
sincerity and probity (p. 251). Ethnography
is not a haphazard hanging around or shad-
owing, as if anything is of interest (p. 254).
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Rather, the observational work must be a sys-
tematic investigation, with some sequential
order (though often dynamically replanned)
that covers a related set of roles, places,
situations, and timelines. For example, in
studying MER rover operations mentioned
previously, the researchers were confronted
with a 24-hour operation in three floors
of a building, involving three shifts of dis-
tinct engineering and scientist teams. Given
access constraints, the group focused on one
room at first, where the scientists met three
times during the day and worked out from
that group and place to understand how
instructions were prepared for the rover’s
next-day operations and then how Mars data
was received and stored for the scientists
to access.

To stimulate inquiry and make learning
progressive, the observer should keep a jour-
nal and review it periodically for issues to
revisit. Another method is to review pho-
tographs and ask about every object, “What
is that? What is it for? Who owns it? Where
is it used and stored?” This can be done
effectively via email with colleagues who
are not at the study site, encouraging them
to ask questions about what they see in
the photos.

The ideal in participatory design is to find
at least one person in the setting who can
be a champion for the inquiry, explaining
the study to others, getting access, and mak-
ing the observational activity legitimate. By
this conception, people in the workplace are
partners in a cooperative activity, and not
referred to as “subjects,” “users,” or “opera-
tors” (Wynn 1991, p. 54). Probably no other
philosophical stance is more fundamental to
the observer’s success. Data are discussed
with the workers (in appropriate forums);
report outlines are circulated for comment;
related local expertise responsible for mod-
eling the workplace is solicited for advice;
documents about the work may even be
coauthored with organizational champions.

Program of Work

For an observational study to be systematic,
there must be an explicit program or plan for

what, where, and how to study the setting
(Harper 2000, p. 248). For example:

e Map out the key processes of the organi-
zation.

 Understand the diversities of work.

* Understand how different sets of persons
depend on one another.

* Determine salient junctures in the infor-
mation life cycle.

A plan will specify particular kinds of records
kept over a certain period, and how they
will be created, as described in subsequent
sections.

Person, Object, Setting, Activity,
Time-oriented Records

To be systematic, the observer must deliber-
ately adopt a perspective and keep records
organized accordingly. Jordan (1996) sug-
gests the perspectives person, object (e.g,
documents), setting, and task or process.
More generally, an activity-oriented record
includes any recurrent behavior, including
both predefined work tasks (e.g., processing
an order) and behaviors that may not be part
of a job description (e.g., answering a phone
call). Time is an orthogonal dimension. For
example, one could check to see what peo-
ple in a work area are doing every 15 minutes
or observe a given setting at the same time
every day. Time-lapse video can be used to
record when people enter and leave a partic-
ular place (Clancey 2001).

Anthropologists make a distinction
between two kinds of data: Emic categories
(after phonemic) are used by participants;
etic categories (after phonetic) are formal
distinctions from an analyst’s perspective
(Jordan 1996). The basic systematic units
mentioned in this section are etic: activities,
roles, objects, persons, places, durations,
etc; in Western European and North
American business settings these often fit
emic distinctions.

Study Duration

Observational studies may last from weeks
to years. The duration depends on the
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logistics and natural rhythm of the setting,
technical complexity, and the study’s pur-
pose. Generally speaking, long-term involve-
ment is preferable to follow the devel-
opment of work practicee. However, a
few months of regular observation can be
sufficient; a few weeks of daily participation
usually enables a proficient analyst to form
an understanding that can be a launching
point for more focused interviews and design
sessions. Indeed, one aspect of a study is to
identify periodicities and historical develop-
ments, that is, to locate observations within
overarching cycles and trends.

Recording Methods and Logistics

Data from natural settings is recorded using
tools varying from paper and pen to elec-
tronic tracking devices. The standard media
are texts (e.g., field notes, documents found
in the setting), video and audio recordings,
photographs, and computer models (e.g., the
Brahms work practice simulation system,
Clancey et al. 1998; Sierhuis 2001). Record-
ing has enabled “repeated and detailed
examination of the events of an interac-
tion . .. permits other research to have direct
access to the data about which claims are
being made...can be reused in a variety
of investigations and can be re-examined in
the context of new findings” (Heritage 1984,
p.238). Having abody of such data is the sine
qua non for being a researcher who studies
natural settings.

Recordings must be labeled, indicating
at least the setting, date, and time. Expe-
rienced ethnographers suggest the follow-
ing procedures: Collect photographs in a
computer catalog, where they can be sorted
by categories into folders. Transcribe field
notes (not necessarily journals) in an elec-
tronic form so that they can be shared
and searched. Organize computer files in
folders, separating preparatory/logistic infor-
mation, miscellaneous graphics, documents
acquired, photographs, field notes, presen-
tations and reports, press stories, email, and
so on.

When recording outdoors, wireless
microphones can be used to avoid wind

interference. An audio mixer with several
microphones enables combining different
sources (e.g., computer speech output,
“ambient” remarks, radio or telephone con-
versations). Typically, observation reveals
settings where interpersonal interaction
occurs, from which one chooses “hot spots”
(Jordan 1996) for systematic video record-
ing. The following methods are suggested:
Use a tripod and wide angle lens, and
multiple cameras for different view points
if possible. Take systematic photographic
records (e.g., the same place each day, such
as a whiteboard) or take a rapid sequence to
create a “film strip” that captures changing
postures and positions as people interact
with materials and each other. Interviews
can be audio recorded, but video (on a
tripod off to the side) provides more
information.

Written records can include a pocket
notebook (for jotting down phrases or not-
ing things to do), a daily journal (often
handwritten) that describes one’s personal
experience, and fleld notes (perhaps using
an outline-based note-taker), with different
sections to elaborate on observations, raise
questions, and interpret what is happening.
Surveys given before, during, and after obser-
vation are recommended. View a survey as a
way to prompt conversations and to encour-
age people to reflect with you on what is
important, including their sense of account-
ability and how they evaluate their own per-
formance (see Clancey, in press). Finally, if
the circumstances of privacy and intellectual
property allow, one may learn a great deal
from documents found in garbage cans.

Data Analysis

Experienced researchers suggest flexible use
of computer tools for representing work
(Engestrom 1999, pp. 85-—90). Analysis
methods are detailed in the handbooks cited
above. Key pointers are provided here.
First, video data must be inventoried
or will probably never be analyzed. Use a
spreadsheet or outline to list the general con-
tent for each recording, and as you watch
loosely transcribe material of special inter-



OBSERVATION OF WORK PRACTICES IN NATURAL SETTINGS 141

est. For an extensive video collection of very
different settings, create a catalog of illustra-
tive frames. Video to be analyzed should be
reformatted if necessary with the time and
date displayed.

Social scientists often use some form
of conversational analysis (CA), including
gaze and gestures (Heritage 1984, p. 233).
This method has revealed that behavior in
“naturally occurring interactions” is strongly
organized to great levels of detail. In pure
form, CA eschews uses of interviews, field
notes, and set-up situations in real world
environments (p. 236). CA emphasizes
“conversation as social action, rather than
as the articulation of internal mental states”
(Dourish & Button 1998, p. 402; Whalen
etal. 2004).

Video-based interaction analysis (Green-
baum & Kyng 1991; Jordan 19906; Jordan &
Henderson 1995) is a method for examining
data in which scientists from different dis-
ciplines may spend hours discussing a care-
fully chosen, transcribed five to ten minute
segment.

Besides narratives and verbal analyses,
data may be collected in spreadsheets (e.g.,
time vs. person/place/activity), flowcharts,
concept networks, timelines, and graphs
(generated from the spreadsheets) (Clancey
2001, in press). If the data have been gath-
ered systematically, it will be possible to
calculate summary statistics (e.g., how long
people did various activities in different
places). Such information may prompt fur-
ther questioning and reveal patterns that
were not noticed by the ethnographer
on site.

Social scientists use a wide variety of met-
rics. However, some studies never measure
or count anything, as statistics are viewed
merely as an attempt to quantify everything
(Forsythe 1999, p. 139) or as being misleading
(Nardi & Engestrém 1999, p. 1). Researchers
engaged in design projects are more likely
to seek a balance. The real issue is whether
the measurements are meaningful (Bernard
19098, p. 17). As a stimulus for further
inquiry, it may be useful to quantify mem-
bers’ concerns (e.g., “I'm interrupted too
much”).

Perspective: Improving Ethnographic
Practice

Observation in natural settings is a valu-
able, and some say necessary, way to sys-
tematically learn about practical knowledge,
that is, to understand how people, places,
activities, tools, facilities, procedures, and
so on relate. One can learn about techni-
cal knowledge from textbooks or lectures,
or even get important insights from surveys
or by designing experiments in a labora-
tory. But expertise has a subjective, impro-
visatory aspect whose form changes with
the context, which is always changing. This
context includes the workers’ conception of
personal and organizational identity (includ-
ing motives and avowed goals), economic
trends, physical environment, and so on.

Observation in natural settings may be
arduous because of the time required, equip-
ment maintenance, the amount of data that
is often generated, personal involvement
with the people being studied, and politi-
cal and power concerns of the organizational
setting. Some conflicts are inherent, with no
easy solution:

e Ethics, privacy, and confidentiality

¢ Distribution and simultaneity of collec-
tive work

Long-cycle phases and off-hours commit-
ments

* Representativeness and systematicity of
the data (vs. details of specific situations)
* Exposing invisible work (e.g., practices
deviate from legally proscribed routines)
* Point-of-view and authoritative biases

Using ethnography for design of work sys-
tems is problematic: One often seeks a large-
scale system design, but the study focuses on
the “small-scale detail of action” (Dourish
& Button 1998, p. 411). Observation natu-
rally focuses on what is; how does one move
to what might be? (see Greenbaum & Kyng
1991; Dekker, Nyce, & Hoffman 2003.)

Just like other work, ethnographies in
practice do not always measure up to the
espoused ideal: “Social scientists have for
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one reason or another failed to depict the
core practices of the occupational worlds
which they have studied” (Heritage 1984,
p. 300). For example, the MER mission
study was limited in practice by the num-
ber of observers and their stamina. Out-
side the defined workflow of mission oper-
ations, the scientists were also participating
in parallel activities of grant writing, pub-
lic affairs, paper preparation, and so forth.
Some of these unobserved activities directly
affected science operations (e.g., prepar-
ing a comparative graph for a conference
presentation might require additional data
from Mars).

The role of simulation for driving obser-
vation and formalizing data is unclear
(Sierhuis 2001; Seah et al. 2005). As one
delves into individual behaviors of spe-
cialists, are approaches recurrent or just
idiosyncratic? To what extent does a col-
lective have uniform methods? Should a
simulation be broad (e.g., several weeks)
or deep (e.g., modeling computer system
interfaces)?

Finally, social scientists, like other work-
ers, may find it difficult to articulate their
own methods: There is “no stable lore
of tried and trusted procedures through
which, for example, taped records. .. can be
brought to routine social scientific descrip-
tion” (Heritage 1984, p. 301). Researchers
often have different disciplinary interests, so
a group of ethnographers at one site might
not collaborate until they write a report
for the host organization. At this point,
the problem of indexing and sharing data
becomes visible, both within the group and
to others seeking to better understand a
study. Effectively, in documenting observa-
tional studies, the work practice researcher
is caught up in all the familiar issues of
lived work, accountability, and contingent
methods.
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CHAPTER

Methods for Studying the Structure of
Expertise: Psychometric Approaches

Phillip L. Ackerman & Margaret E. Beier

“Psychometrics” refers to the scientific dis-
cipline that combines psychological inquiry
with quantitative measurement. Though
psychometric theory and practice pertain to
all aspects of measurement, in the current
context, psychometric approaches to exper-
tise pertain to the measurement and pre-
diction of individual differences and group
differences (e.g., by gender, age) and, in
particular, high levels of proficiency includ-
ing expertise and expert performance. The
scientific study of expertise involves sev-
eral important psychometric considerations,
such as reliability and validity of measure-
ments, both at the level of predictors (e.g., in
terms of developing aptitude measures that
can predict which individuals will develop
expert levels of performance), and at the
level of criteria (the performance measures
themselves). We will discuss these basic
aspects of psychometric theory first, and
then we will provide an illustration of psy-
chometric studies that focus on the predic-
tion of expert performance in the context
of tasks that involve the development and
expression of perceptual-motor skills, and
tasks that involve predominantly cognitive/

intellectual expertise. Finally, we will discuss
challenges for future investigations.

Before we start, some psychological
terms need to be defined. The first terms are
“traits” and “states.” Traits refer to relatively
broad and stable dispositions. Traits can be
physical (e.g., visual acuity, strength) or
psychological (e.g., personality, interests,
intelligence). In contrast to traits, states
represent temporary characteristics (e.g.,
sleepy, alert, angry). The second set of
terms to be defined are “interindividual
differences” and “intraindividual differ-
ences.” Interindividual differences refer
to differences between individuals, such
as the difference between the heights of
students in a classroom or the speed of
different runners in a race. Intraindividual
differences refer to differences within
individuals, such as the difference between
the typing speed of an individual measured
at the beginning of typing class and that
same individual’s typing speed at the end
of a year of practice in typing. Studies of
the development of expertise during skill
training can focus on interindividual dif-
ferences (e.g., the rank ordering of a group
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of trainees), intraindividual differences
(e.g., measuring the transition of perfor-
mance for given individuals from novice to
expert levels of performance), or a com-
bination of the two (e.g., interindividual
differences in intraindividual change — or
more colloquially, which of the trainees
learned the most or the least during the
course of training).

General Aspects of Psychometric
Approach: Predictors

There are two fundamental aspects of mea-
surement that transcend psychology and
other scientific inquiries, namely, reliability
and validity. The first consideration of any
measurement is reliability, because without
reliable measurements, there would be no
basis for establishing validity of the mea-
sures. However, even with reliable measure-
ments, one may or may not have a valid mea-
sure for a particular application or theory.
Thus, we will follow up our discussion of
reliability with a review of the critical con-
siderations of validity. The final part of this
section will consider issues of reliability and
validity in terms of predicting individual dif-
ferences in expert-level performance, espe-
cially in the context of base-rate concerns.

Reliability

At a general level, the definition of psycho-
metric reliability is not very different from a
commonsense meaning of the term. If your
coworker shows up for work at nearly the
same time every day, you might say that her
attendance is reliable. If another coworker
is often late or even sometimes early, but
you can rarely predict when she will actu-
ally walk through the door of the office, you
might consider her to be unreliable in atten-
dance. The psychometric concept of relia-
bility concerns a similar accounting of con-
sistency and precision, except in this case
we ordinarily refer to the reliability of mea-
sures or tests, rather than individuals. A test
or other form of assessment is considered to
yield reliable results when a group of individ-

uals can be consistently rank-ordered over
multiple measuring occasions.

There are many different ways to mea-
sure reliability; some approaches are more
or less suitable to particular occasions than
others. For example, a test of running speed
might involve measuring how fast a group
of runners can complete a 10-km race. One
way to estimate the reliability of such a test is
called the test-retest method, and it involves
administering the same test again immedi-
ately after the first test. In the case of a
running speed test given immediately at the
conclusion of a race, performance might be
very different across the two tests, because
of differential fatigue. Such results might
erroneously suggest that the test is not very
reliable. Rather, a more suitable method for
assessing the reliability of the running-speed
test would be to administer the same test,
but delayed in time a week after the first
test. An index of reliability computed from
these two scores would be more appropriate
(because fatigue would be less likely to figure
into any performance differences between
the two occasions). Also, the state of the in-
dividual (e.g., mood, amount of sleep the
previous night, etc.) is less likely to be the
same on measurement occasions that are
separated by a week or longer, and so the reli-
ability of the test would be less influenced
by state effects on performance, and more
likely to be a function of the underlying trait
of running speed.

In the example above, the same test is
administered to the participants on more
than one occasion (test-retest reliability).
Although this strategy is both practical and
reasonable for some physical performance
measures, problems sometimes occur when
considering the reliability of more cognitive
or affective (i.e., personality) traits. There
are two main problems for using test-retest
procedures for estimating reliability of psy-
chological traits. The first problem is mem-
ory — humans may remember how they
responded to a survey or test across occa-
sions, unless the tests are separated by a very
long time (and sometimes, even this is insuf-
ficient). The second problem pertains mostly
to performance measures, such as aptitude,
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ability, and skill assessments. This problem
is learning — that is, examinees often learn
either explicitly or implicitly during the
test. Tests ranging in difficulty from simple
arithmetic problems to complex simulations
typically show significant and sometimes
substantial improvements in performance
from one occasion to the next, either be-
cause examinees have learned the correct
responses, or they have become more skilled
at performing the basic operations required
by the test. Under these conditions, a more
appropriate method of assessing the reliabil-
ity of the test is to use what is known as an
“alternate form.” An alternate form is typi-
cally a test that is designed in a very similar
fashion to the first test, but one that differs
in terms of the actual items presented to the
examinee. When fatigue is not an important
consideration, alternate forms of a test can
be administered one right after the other.
Otherwise, alternate forms can be adminis-
tered after a delay, just like in the test-retest
procedure described above.

A final type of reliability that is relevant to
the study of expertise is inter-observer relia-
bility. This is an index of agreement between
different judges, when performance can-
not be objectively evaluated (e.g., gymnas-
tics, diving, art, music). When judges have
high agreement in rank-ordering individuals,
there is high inter-observer reliability; but
when there is little agreement, reliability of
the judgements is low.

Reliability of a measure is the first hur-
dle that must be passed for it to be scien-
tifically or practically useful. Without relia-
bility, a test has little or no utility. But, just
having a consistent rank-ordering of individ-
uals on a test says nothing about whether
or not the test actually measures what it sets
out to measure. For that assessment, we have
the concept of validity.

Validity

Validity is a property of an instrument that
refers to whether it measures what it sets
out to measure. Thus, a test of baseball
skill is valid to the degree it actually pro-
vides a measurement of the trait defined

as “baseball skill.” There are three differ-
ent aspects of a test that need to be con-
sidered in evaluating validity: content valid-
ity, construct validity, and criterion-related
validity. Content validity refers to the under-
lying content of the trait under considera-
tion. For baseball, the content of the skill
would include batting, running, fielding, and
other aspects. A test of baseball skill that
focused on all relevant components of these
tasks to the same degree that they are impor-
tant would have high content validity. Gen-
erally, content validity is established through
judgments of subject-matter experts and
is not directly assessed in a quantitative
fashion.

Construct validity refers to the rela-
tionship between a measure of a particu-
lar trait or state and the underlying the-
oretical concept or construct. Establishing
the construct validity of a measure usually
involves evaluating the correlation between
the measure and other assessments of the
same or similar constructs. Generally, in
order for a measure to have high construct
validity, it must correlate substantially with
other measures of the same or similar con-
structs (this is called “convergent validity”),
and the measure should not correlate sub-
stantially with measures of different con-
structs (this is called “discriminant valid-
ity”). For example, a measure of general
baseball skill might be expected to have
high correlations with a measure of base-
ball strategy knowledge (convergent valid-
ity), but low correlations with a measure
of football strategy knowledge (discriminant
validity).

Especially important in terms of the
application of psychometric measures is
criterion-related validity. The key to cri-
terion-related validity is prediction; it refers
to the degree to which the measure can pre-
dict individual differences in some criterion
measure. For an intelligence test, criterion
validity is frequently demonstrated by the
degree to which scores on the intelligence
test correlate with a criterion of academic
performance, such as grade point average or
academic promotion from one grade to the
next. The typical application-oriented goal
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is to use a test or other assessment measure
as an aid in selection, such as for educa-
tional or training opportunities or for a job
or to be a team member. Ideally, criterion-
related validity is assessed by administering
the test to a group of individuals who are
all selected for the educational or occupa-
tional opportunity. Criterion performance
is then measured at a later time, such as
after training, or after a period of job per-
formance. This kind of assessment is called
“predictive validity” and it provides the most
precise estimate of the relationship between
the measure and the criterion, unless there
are individuals who leave the program prior
to the time that criterion measurement
is obtained.

When it is not possible to use such a pro-
cedure (such as when there is some selec-
tion procedure already in place, or when
the cost of training is high), an investi-
gator can perform a concurrent-validation
assessment. In this procedure, the measure
is administered to incumbents (e.g., current
employees, current students, current team
members), and their criterion performance
is also assessed. Given that one can usually
assume that incumbents are more restricted
in range on the key traits for performance
than are applicants (through either existing
selection procedures, through self-selection,
or through attrition associated with train-
ing or performance failures), establishing
the validity of a new measure is more dif-
ficult using concurrent-validity procedures
than it is for predictive-validity procedures.
Procedures exist for estimating the predic-
tive validity of a test when assessed in a
concurrent-validity study, especially when
there are data concerning the differences
between incumbents and applicants (e.g.,
see Thorndike, 1949). For example, apti-
tude tests such as the SAT show only rel-
atively modest concurrent validity correla-
tions with college grade point average at
selective colleges and universities. However,
an institution can estimate the predictive
validity of the SAT, given knowledge of the
test score distributions of both applicants
and incumbents.

Special Considerations of
Measurement in the Prediction
of Expert Performance

By its very nature, the study of expertise
is associated with several specific measure-
ment problems. We consider four of the
most important problems: measurement of
change, restriction of range, base rates, and
interdependence issues.

Measurement of Change

From early in the 19o0s, psychologists inter-
ested in individual differences in learn-
ing and skill acquisition (e.g., Thorndike,
1908; see Ackerman, 1987; Adams, 1987
for reviews) have attempted to evaluate
which individuals learn the most during
task practice or from training interven-
tions. There are two fundamental issues that
arise in assessing the amount of change dur-
ing learning: measurement artifacts related
to regression-to-the-mean effects, and the
underlying nature of individual differences
in learning. Regression-to-the-mean is a
statistical phenomenon, not a set of causal
effects. When measurements (in this case,
initial performance on a task) are not
perfectly reliable, those individuals with
extreme scores on the first occasion are
likely to obtain scores closer to the respec-
tive mean for the second occasion (after task
practice). This means that, ceteris paribus
(i.e., if everything else is equal), individu-
als with below average scores at initial per-
formance measurement will have relatively
higher scores at the second occasion, and
individuals with above average scores on
the first occasion will have relatively lower
scores on the second occasion. Again, this
is a statistical phenomenon, but it results
in a potentially critical artifact that can be
misinterpreted.

The deeper problem occurs when a
researcher attempts to evaluate the rela-
tionship between initial task performance
and the amount of learning (or gain in per-
formance) after practice or training. Given
the nature of the regression-to-the-mean
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phenomenon, the expected correlation
between initial performance and later per-
formance will be negative (simply as a func-
tion of the regression to the mean). An
unsuspecting researcher might be tempted
to conclude that a training program has the
effect of “leveling” individual differences in
performance, in that the poor performers
get relatively better and the good performers
get relatively worse (McNemar, 1940). Ulti-
mately, it is a bad idea to attempt to measure
individual differences in learning by corre-
lating initial performance with performance
after practice or training (e.g., see Cronbach
& Furby, 1970).

A second issue related to measuring indi-
vidual differences in learning is the nature
of interindividual variability during learn-
ing or skill acquisition. Because the mag-
nitude of interindividual variability is asso-
ciated with changes in the reliability and
validity of predictor measures, it is impor-
tant to take account of factors that might
lead to changes in interindividual variabil-
ity. For skills that can be acquired by all
or nearly all learners, interindividual vari-
ability tends to decline with task practice
or training (e.g., see Ackerman, 1987). Fre-
quently, the changes in variability can be
substantial. For tasks with substantial motor
or perceptual-motor components, such as
typing or golf there are extremely large
interindividual differences in initial perfor-
mance, but after extensive training, per-
formance variability is much smaller. One
reason for this is that there are physical lim-
itations on performance at high levels of
expertise. The most expert typist can type
only as rapidly as one keystroke every 100
ms, and the most expert golfer is likely to
perform a handful of strokes under par. In
contrast, there are few limits at the other
end of the performance continuum — there
are many more ways that an individual can
perform a task poorly than there are ways
that a task can be performed at an expert
level. Thus, when it comes to comparing
the learning rates of a group of individu-
als, it is the poorest performing learners that
have the most to gain, and the highest initial

performers who have the least to gain from
task practice or training.

It is important to emphasize that these
substantial changes in interindividual vari-
ability are typically found only for tasks
that are within the capabilities of nearly all
learners. When tasks are complex or incon-
sistent in information-processing demands,
interindividual variability may not change
over task practice (Ackerman, 1987, 1992;
Ackerman & Woltz, 1994), or there may
be a Matthew effect (e.g., see Stanovich,
1986). A Matthew effect refers to the phe-
nomenon of the “rich getting richer,” essen-
tially a positive association between initial
standing and the amount of learning. (The
term derives from Jesus’ “Parable of the Tal-
ents,” Matthew, XXV:29, “For unto every
one that hath shall be given, and he shall
have abundance: but from him that hath
not shall be taken away even that which
he hath.”) Such effects have been found in
reading skills and in other cognitive or intel-
lectual tasks (Lohman, 1999). For example,
expertise in mathematics is likely to show a
Matthew effect, as many learners effectively
drop out of the learning process at different
stages along the way to developing exper-
tise (e.g., at the level of acquiring skill at
algebra, at calculus, or beyond). Across nor-
mal development, the differences between
experts and non-experts in mathematics will
become more pronounced, which will be
manifest as larger interindividual variability
in performance after practice or education.

A few laboratory-based examples may
help illustrate the nature of the development
of expert performance with the context of
changing mean performance and changes
in interindividual variability (as expressed
in the between-individual standard devia-
tion of performance). Figure g.1a—c shows
three different tasks, which are reasonably
well defined, but differ in the nature of the
task demands and the effects of practice on
task performance. The first graph is from a
skill-acquisition experiment with a simpli-
fied air traffic controller (ATC) task (the
Kanfer-Ackerman Air Traffic Controller
task; Ackerman & Cianciolo, 2000; for a
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Figure g.1a—c. Performance means and between-individual standard deviations over task practice.
Panel a. Kanfer-Ackerman Air Traffic Controller task (data from Ackerman & Cianciolo, 2000);
Panel b. Noun-Pair Lookup task (data from Ackerman & Woltz, 1994); Panel c. Terminal Radar
Approach Control task (data from Ackerman & Kanfer, 1993).

more extensive description of the task, see
Kanfer & Ackerman, 198¢). The task is diffi-
cult for participants when they first perform
it. Cognitive/intellectual abilities (discussed
below) are substantially related to individ-
ual differences in initial task performance.
However, the task has only seven rules, and
all task operations can be accomplished with
just four different keys on the computer key-
board. As a result, within five or six hours of
practice, nearly all of the learners become
expert performers. Figure 9.1 Panel a shows

how mean performance increases quickly in
the early sessions of practice, but becomes
asymptotic as most learners develop high
levels of skills. Between-individual standard
deviations start off high (when there are
large differences between those learners who
easily grasp the task demands early in prac-
tice, and those learners who must struggle to
keep up), then decline as the slower learn-
ers ultimately acquire the skills necessary to
perform the task at an expert level. At the
end of six hours of practice, the magnitude of
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between-individual standard deviations has
changed from ¢.08 to 6.55, a reduction of
about 28%.

In the second example, a more high-
fidelity air traffic control task was used.
In contrast to the previous task, this
one (called TRACON, for Terminal Radar
Approach Control; see Ackerman & Kanfer,
1093) involves sustained and focused atten-
tion, continuous sampling of the visual
radar screen, short-term memory, problem-
solving abilities, and spatial visualization.
There are many more commands to learn,
and each 30-minute task trial involves novel
configurations of airplanes that the learner
must handle in real-time. Few participants
perform very well on the first few trials,
and in general, it takes much longer to
acquire skills on TRACON than it does for
the simpler Kanfer-Ackerman ATC task. For
TRACON, many learners do not reach
expert levels of performance, even after
extensive task practice. Figure ¢g.1b shows
that while mean performance markedly
increases over 18 hours of task practice, there
is a slow rise in between-individual standard
deviations in performance. From the initial
to final practice sessions, standard deviations
have changed from 3.19 to 4.49, an increase
of 41%.

The third example illustrates what hap-
pens when learners adopt different learn-
ing or performance strategies. The task for
this example is a simple lookup task, where
the learner is presented with nine pairs of
nouns on the upper part of a the computer
display, and a test probe (which either has
one of the matching pairs of words, or has
two words that do not match) on the lower
part of the computer display (Ackerman &
Woltz, 1994). What happens in this task is
that some individuals simply look up the
words on each task trial, which is a strategy
that minimizes effort on the individual trial
level. We called these individuals “scanners.”
Performing with this strategy rarely can be
accomplished in less than about 1 sec/trial
(1000 msec). Other individuals, however,
work to memorize the word pairs while they
are also looking up the words for each trial.
Their efforts are greater at the individual

trial level, but very quickly these individ-
uals get quite a bit faster than their scan-
ner counterparts because they can retrieve
the word pairs from memory much faster
than it takes to scan the display. Thus, we
called these individuals “retrievers.” Retriev-
ing the items from memory can be very
fast, and expert retrievers performed about
twice as fast as the best scanners (e.g., about
500 msec/trial). Eventually (i.e., after sev-
eral hundred task trials), the scanners learn
at least some of the word pairs, almost inci-
dentally, and get faster at the task.

When one looks at the overall per-
formance and interindividual variability
(Figure g.1c), there is a general mean im-
provement in the speed of responding, as
would be expected. However, there is an
initial increase in between-individual vari-
ability as practice proceeds, since the retriev-
ers are getting much better at task perfor-
mance, and the scanners are profiting much
less from each practice trial. Eventually,
between-individual variability decreases, as
even the scanners begin to memorize the
word pairs. That is, an initial SD level of
421 msec increases to 521 msec (an increase
of 24%) before declining to 406 ms. At the
end of 1,350 task trials, there has been an
overall decline in between-individual SD of
only 4%.

Restriction of Range

When interindividual variability declines
with the development of expertise, a group
of expert performers can be expected to
show much smaller differences between
them than do novices. The psychometric
problem associated with such a restriction
in range of performance is that correlations
with measures of limited variability atten-
uate (i.e.,, they get closer to zero). This
can make it very difficult to find tests that
can predict individual differences in perfor-
mance, simply because there is relatively lit-
tle variance to account for by the predictor
measures. Of course, this makes betting on
the winner of competitive sports competi-
tions a highly speculative activity, whether
one is wagering money on the outcome
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of the competition or predicting the rank
order of individuals when validating an abil-
ity or personality test. In the final analysis, it
is much easier to predict which individuals
will develop expertise in a task that shows a
Matthew effect with practice than it is to
predict which individuals will develop
expertise in a task that evidences a decline
in interindividual variability.

Base Rate Issues

In addition to restriction of range in perfor-
mance, there is a more fundamental prob-
lem for developing valid predictors of per-
formance, namely, the problem of extreme
base rates (i.e., the rate at which a behavior
is exhibited in the population). It has been
shown (e.g., Meehl & Rosen, 1955) that as a
behavior becomes less likely to occur (such
as when only 1 in 100 college athletes ulti-
mately end up playing professional sports),
a test to predict the likelihood of reaching
the professional teams must have extremely
high validity to be practically useful. Thus,
when expert performance on a task is a rare
phenomenon, it may not be practically feasi-
ble to develop a selection measure that pro-
vides valid inferences for which individual is
going to succeed.

Interdependence of Performance

Another difficulty that arises in the study
of expert performance in some tasks is that
performance is not solely dependent on the
efforts of the individual performer. In many
occupations, ranging from sports (such as
team efforts, or when there are other indi-
vidual competitors, as in tennis or auto rac-
ing) to scientific discovery or technologi-
cal research and development, performance
success depends to a nontrivial degree on the
actions or behaviors of others, or depends on
environmental influences outside of the con-
trol of the performer (Ed: see Salas, et al.,
Chapter 25, this volume). Thus, a baseball
player’s batting performance is dependent
on the skill level of the pitcher, perhaps
nearly as much as it does on the skill of the
batter. Or, the scientific contribution of a

scientist may depend on how many other
researchers are working toward the same
goal — getting to the goal a few days or
months ahead of the competition may sig-
nal the difference between fame and fortune
on the one hand, and relative obscurity on
the other hand (e.g., see the discussion by
Watson, 2001, on the race to discover the
structure of DNA).

When expert performance is interdepen-
dent with the performance of others, the
ideal measurement of an individual’s per-
formance would be an average of multi-
ple measures taken with as divergent a
set of other performers as possible. For
some types of expert performance, a round-
robin type tournament would be one means
toward accomplishing this goal; however,
this kind of procedure is not practical in
many different domains. Race car drivers
do not compete in cars from all competi-
tor manufacturers, football players cannot
be assigned willy-nilly to different teams
every week, and research professors cannot
be easily moved around from one institu-
tion to another. When random assignment
is not possible, more complicated statistical
designs are needed to attempt to disentangle
the effects of the team or other performers
on the performance of the individual. Some-
times, however, this is simply impossible
to accomplish. Under these circumstances,
the only acceptable solution is to create
an artificial environment (such as a labora-
tory experiment with simulations) in which
the individual’s performance can be evalu-
ated in the absence of other performers (Ed:
see Ward, et al. Chapter 14, this volume).
Although these procedures can provide the
needed experimental control, the risk is that
the performance measurements taken under
artificial laboratory conditions may not be
valid representations of the actual real-world
task (e.g., see Hoffman, 1987).

Trait Predictors of Expertise

One of the most universal findings regarding
individual differences in task performance
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over practice or education is that as the
time between measurements increases, the
correlations between measurements attenu-
ate, though the correlations rarely drop all
the way to zero. Sometimes, when the task
is simple and skills are rapidly acquired, the
decline in correlations between initial task
performance and performance on later task
trials is extremely rapid (e.g., see Ackerman,
1987; Fleishman & Hempel, 1955; Jones,
1962). When tasks are more complex, there
is still a pattern of declining correlations, but
it is much less steep. Intelligence test perfor-
mance for children older than about age s,
for example, is very stable from one occasion
to the next. Test-retest correlations with a
lag of less than a year for an omnibus IQ test
are in the neighborhood of .go. Correlations
with a lag of a long time, such as age 6 to
age 18, are indeed lower (r = .80 or so, see
Honzik, MacFarlane, & Allen, 1948), but are
still substantial.

The important aspect of this general phe-
nomenon (which is called a simplex-like
effect, after Guttman, 195 4; see Humphreys,
19600) is that when the correlations are low
between initial task performance and per-
formance after extensive practice, the deter-
minants of initial task performance cannot be
the same as the determinants of final task
performance. The critical questions, from a
psychometric perspective, are what are the
trait predictors of initial task performance,
what are the trait determinants of expert
level performance, and what is the difference
between the two?

From the time of Immanuel Kant (e.g.,
1790/1987), philosophers and psychologists
have referred to three major families of
traits: cognitive, affective, and conative.
Cognitive traits refer to abilities, such as
intelligence, or domain-specific knowledge
and skills. Affective traits refer to personal-
ity characteristics (such as impulsivity, con-
scientiousness, extroversion). Conative traits
refer to motivation, interests, or more gener-
ally “will.” In addition, there are other traits
that do not fitneatly into the tripartite break-
down, such as self-concept or self-efficacy.
We briefly discuss these families of traits and

their validity for predicting individual differ-
ences in expert performance, or in the devel-
opment of expertise.

Cognitive Traits

Perhaps the most pervasive evidence for
the validity of psychological measurements
in predicting individual differences in the
development of expertise is found for mea-
sures of cognitive or intellectual ability (e.g.,
see Jensen, 1998; Terman, 1926). Cognitive
ability measures can be very general (such
as 1Q, or general intelligence); they can
be broad (such as verbal, numerical, and
spatial ability); or they can be quite spe-
cific (such as verbal fluency, computational
math, or spatial visualization). From the first
introduction of the modern test of intelli-
gence (Binet & Simon, 1973), it has been
clearly demonstrated that IQ measures can
provide a highly reliable and highly valid
indicator of academic success or failure. In
fact, over the past 100 years, IQ testing is
probably the single most important applica-
tion of psychological research in the west-
ern world. IQ tests have the highest validity
for the purpose for which they were devel-
oped — namely, prediction of academic per-
formance of children and adolescents. They
provide significant and substantial predictive
validity here, but somewhat less so for pre-
dictions of adult academic and occupational
performance. Narrower tests, such as ver-
bal, numerical, and spatial-content abilities,
when properly matched with the task to be
predicted, can have somewhat higher validi-
ties for adults than general intelligence.
However, the general pattern found
across many different investigations is that
general and broad measures of cogni-
tive/intellectual abilities are the most impor-
tant predictors of performance early in train-
ing or learning. When tasks are within the
capabilities of most performers, and declin-
ing interindividual variability is observed,
broad ability measures tend to show lower
validity for predicting performance over task
practice and instruction (e.g., see Ackerman,
1988; Barrett, Alexander, & Doverspike,
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1992). That is, what appears to limit per-
formance early in task practice (i.e., for
novices) are the same abilities that are
tapped by broad measures of intelligence,
such as memory and reasoning. Individual
differences in these abilities can determine
how well a learner understands what is
required in the task situation, and how
effective the learner is in forming strate-
gies and plans for task accomplishment.
But, as we mentioned earlier in connec-
tion with interindividual variability, a learner
who quickly grasps the essence of the task
has an advantage early in practice that dimin-
ishes as slower learners eventually begin to
catch up over time. Skills such as driving a
car provide a good example of this kind of
learning situation. Some learners grasp the
procedures of scanning the various instru-
ments and operating the controls quickly,
and others more slowly, but after a few
months of training and practice, the role of
reasoning and memory in determining indi-
vidual differences in performance is substan-
tially diminished.

There has been some evidence to sug-
gest that when tasks are relatively simple
and highly dependent on speed of percep-
tion and response coordination, there is an
increase in the predictive validity of per-
ceptual speed and psychomotor abilities for
task performance as expertise is developed
(e.g., see Ackerman, 1988, 199o; Ackerman
& Cianciolo, 2000). That is, after extensive
practice where most individuals become rea-
sonably skilled at the task (such as driv-
ing a car or typing), performance is limited
by more basic and narrow abilities (such as
visual acuity and manual dexterity). Under
these circumstances, the best ability predic-
tors for individual differences in expert per-
formance may be those measures that are
associated with the limiting determinants of
performance, rather than those abilities that
are associated with reasoning and problem
solving.

When attempting to select applicants
for training or for job performance, one
needs to take account of both the cogni-
tive/intellectual ability correlations with ini-
tial task performance and the narrow ability

correlations with performance after exten-
sive practice. If training is a long, expen-
sive process (such as training individuals to
fly airplanes), it may make more sense to
focus on using broad measures of cogni-
tive/intellectual abilities for selection pur-
poses, so as to minimize the number of
trainees that wash out of a training pro-
gram. If training is less involved (such as
in the selection of fast-food service work-
ers or grocery-store checkout clerks), it may
be more effective for the organization to
base selection on perceptual speed and psy-
chomotor measures to maximize the num-
ber of expert performers in the long run.
More elaborate selection procedures can be
used, such as a “multiple-hurdle” approach.
This procedure would provide tests of both
cognitive and psychomotor measures, and
applicants would be selected only if they
pass a threshold score on both measures.
Such a procedure maximizes both the like-
lihood of training success and the likelihood
of high levels of expert job performance.

When the tasks are not within the capa-
bilities of many performers, or the task
is highly cognitively demanding even after
extensive task practice, general and broad
content ability measures may maintain high
levels of validity for predicting individ-
ual differences in performance long after
training (e.g., for a discussion and examples,
see Ackerman, 1992; Ackerman, Kanfer, &
Goff, 1995). Most real-world jobs that are
highly cognitively demanding have substan-
tial domain knowledge prerequisites (e.g.,
the jobs of air traffic controller, neurosur-
geon, software developer). One aspect that
differentiates these tasks from other kinds
of knowledge work are the strong demands
of the tasks in handling novel information.
Expert performance on these tasks is thus
jointly influenced by individual differences
in domain knowledge and by broad intellec-
tual abilities (both general and content abil-
ities, such as spatial abilities for air traffic
controllers).

Although domain knowledge can partly
compensate for ability shortcomings when
memory and reasoning abilities decline with
age, world-class performance for such tasks
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generally remains the province of relatively
younger adults (e.g., see Simonton, 1994).
In contrast, for jobs that are predominantly
associated with domain knowledge rather
than the ability to deal with novelty, domain
knowledge and skills appear to be relatively
more influential than current levels of gen-
eral and broad content abilities (e.g., see Chi,
Glaser, & Rees, 1982). Such jobs include
author, lawyer, radiologist, and so on. In
such cases, the additional domain knowl-
edge obtained through experience more
than compensates for declines in general
abilities with age, at least into middle age,
and sometimes into early old age. Predictors
of expert performance in these jobs appear
to be those measures that tap the breadth
and depth of relevant domain knowledge
and skills (e.g., see Willingham, 1974). For
a classification of job types along these lines,
see Warr (1994).

In general, across both motor-dependent
tasks and knowledge or cognitive tasks, the
key ingredient in maximizing the correla-
tions between predictors and criteria is the
concept of Brunswik Symmetry (Wittmann
& SiiB3, 1999) —named after Egon Brunswik’s
Lens Model (Brunswik, 1952). That is, the
content and especially the breadth of both
predictor and criterion need to match. When
a criterion is relatively narrow (e.g., specific
task performance or a component of task
performance), the best ability predictors will
be those that are matched in both content
(e.g., spatial, verbal, numerical, perceptual-
motor) and breadth (in this example, a rela-
tively narrow criterion would merit develop-
ment of a relatively narrow ability battery for
prediction purposes). Thus, predicting the
typing speed of a typist is much more likely
to be better predicted from a dexterity test
(narrow) than an IQ test (broad).

Affective Traits

Affective, or personality, traits represent an
area of great promise for prediction of the
development and expression of expertise,
but this area has little substantive evidence
to date. Generally speaking, one can readily
predict that serious affective psychopathol-

ogy (e.g., schizophrenia, endogenous depres-
sion) is negatively correlated with develop-
ment of expertise (all other things being
equal), ceteris paribus, simply because these
patterns of personality are associated with
the ability to manage oneself in society. It
is noteworthy, though, that there are many
counterexamples of experts who have had
serious psychopathology (such as the Nobel
Laureate mathematician, John Forbes Nash
Jr., the Russian dancer Vaslav Nijinsky, Sir
Isaac Newton, Robert Schumann, and many
others). The unanswered, and perhaps unan-
swerable question, is whether these and
other such individuals would have devel-
oped their respective levels of world-class
expertise if they had not suffered from these
affective disorders.

In the realm of normal personality traits,
one of the most promising constructs for
predicting expertise has been need for
Achievement (nAch), proposed by Murray
et al. (1938). McClelland and his colleagues
(McClelland & Boyatzis, 1982; see Spangler,
1992 for a review), performed several studies
that provided various degrees of validation
for nAch in predicting successful perfor-
mance in a variety of different occupations,
but especially in the domain of manage-
rial success. Other personality traits (e.g.,
openness to experience, conscientiousness,
extroversion) have been moderately linked
to success in several different occupations
(e.g., see meta-analyses by Barrick & Mount,
1991). However, in contrast to cognitive-
ability predictors of expertise, the direction
and magnitude of personality trait measure
correlations with success appear to be more
highly dependent on the occupational con-
text. That is, even when some ability traits
are not directly relevant to a particular job
or task, correlations between ability pre-
dictors and criterion performance measures
are almost always positive, even if not par-
ticularly substantial. In contrast, for exam-
ple, extroversion may be reliably higher
among experts in jobs that require inter-
personal skills and leadership (e.g., politics,
senior management), but the same trait may
be relatively lower for experts in domains
that require intensive individual efforts (e.g.,
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mathematician, chess player). As a result,
one perhaps might not expect that there
will be particular personality traits that are
associated with expertise across divergent
domains.

Conative Traits

Some researchers have argued that the need
for achievement (nAch) falls more in the
domain of conation or will instead of per-
sonality, but this issue illustrates one of the
more enduring issues in the field of person-
ality research and theory — the problem of
parsing the sphere of individual traits, when
they do not really exist in isolation. nAch
and many other conative traits, such as voca-
tional interests, have clear and sometimes
substantial overlap with personality traits
(e.g., see Ackerman & Heggestad, 1997 for
a review).

In the 1950s, vocational-psychology
researchers converged on a set of core
interest themes on which individuals relia-
bility differ (e.g., see Guilford et al., 1954;
Holland, 1959; Roe, 1956). Perhaps the
most widely adopted framework from this
research has been Holland’s “RIASEC”
model — which is an acronym for six
major vocational interest themes, namely:
Realistic, Investigative, Artistic, Social,
Enterprising, and Conventional (e.g., see
Holland, 1997). It is possible to match these
vocational interest themes with characteris-
tics of jobs, so that individuals can be guided
by vocational counselors to occupations
that best match their underlying interests.
It is possible that one could identify areas
of expert performance within each of these
different interest themes. There is a body
of research that would support the notion
that if individuals and jobs are matched
on these themes, individuals are more
likely to develop expertise (along with job
satisfaction) than if there is a mismatch
between the individual’s interests and
the job characteristics (e.g., see Dawis &
Lofquist, 1984; Super, 1940). However, a
match between the direction of interests
and job characteristics is not in itself suffi-

cient for predicting which individuals will
develop expertise.

The concept of “occupational level”
(Holland, 1997), which represents how
much challenge an individual desires in the
task, is probably at least as important as
the direction of interests is to the predic-
tion of expertise. Occupational level is con-
sidered to represent a complex function of
both an individual’s abilities and his/her self-
concept, which is the individual’s estimation
of his/her own abilities. There is probably
more to this construct than self-concept and
objective ability, in the sense that some indi-
viduals have both high aptitude for attain-
ing expertise, and have high estimation of
their own aptitude, but lack the motivational
drive to develop expertise. Kanfer (1987)
has referred to this last component as the
“utility of effort,” that is, the individual’s
desired level of effort expenditures in a work
context.

SELF-CONCEPT AND SELF-EFFICACY

Self-concept is a relatively broad set
of constructs that parallel abilities (e.g.,
general intelligence, verbal, spatial, numer-
ical abilities, etc.). Self-efficacy refers to
task-specific confidence in one’s abilities
to accomplish particular levels of perfor-
mance (Bandura, 1977). From a Brunswik
Symmetry perspective (Wittmann & Siif3,
1999), predictions of expert performance
from self-efficacy measures are likely to
show higher criterion-related validity for
performing specific tasks, mainly because of
a closer match of breadth of predictor to
breadth of criterion. For example, a self-
efficacy measure might ask a golfer to pro-
vide a confidence estimate for making a spe-
cific putt, whereas a self-concept measure
might ask the golfer to provide an estimate
of his/her competence in putting, overall.
There is also a motivational component to
self-efficacy that entails what an individ-
ual “will do” in a task, in addition to what
the individual “can do.” Existing data sug-
gest that when the task is well defined, and
when individuals have some experience with
a task, self-efficacy measures can provide
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significant predictions of expert perfor-
mance (e.g., Feltz, 1982).

Communality among Predictors
and Trait Complexes

In terms of assessing and predicting indi-
vidual differences in expertise, we have dis-
cussed how cognitive, affective, and conative
traits all appear to play a role, at least to a
greater or lesser extent. We would be remiss
if we did not also note that whereas many
researchers have only considered one or
another of these trait families in predicting
expertise, there is important shared variance
among these traits. In terms of predictive
validity, common variance between predic-
tors means that their effects in a regres-
sion equation are not independent, and thus
the total amount of variance accounted for
in the criterion measure will ordinarily be
less than would be obtained by adding the
contributions of each trait family. Such com-
mon variance among trait families has even
more important implications for theoretical
considerations of the determinants of indi-
vidual differences in expertise, in the sense
that synergies across trait families may help
us understand why individuals are oriented
more toward some domains than others, or
why some individuals succeed in developing
expertise, whereas others develop only mod-
erate or poor levels of task performance.

Trait Complexes

Ackerman and Heggestad (1997) reviewed
the literature on the commonalities among
abilities, personality, and interests. In the
context of a meta-analysis, they found that
there appeared to be at least four broad
constellations of traits that appeared to
hang together, which they called “trait com-
plexes” (after Snow’s concept of aptitude
complexes; Snow, 1989). The underlying
theoretical premise regarding these trait
complexes is that they may represent config-
urations of traits that operate synergistically,
in being either facilitative or impeding of the
development of domain-specific knowledge,

skills, and ultimately expert performance.
The four trait complexes derived by Acker-
man and Heggestad are shown in Figure ¢ .2,
in a spatial representation that overlays abil-
ity and personality traits with Holland’s
hexagonal model of interests. The four trait
complexes were described as follows:

The first trait complex shows no positive
communality with ability measures, and
is made up of a broad “Social” trait com-
plex. It includes Social and Enterprising
interests, along with Extroversion, Social
Potency, and Well-Being personality traits.
The remaining trait complexes do include
ability traits. A “Clerical/Conventional”
trait complex includes Perceptual Speed
abilities, Conventional interests, and Con-
trol, Conscientiousness, and Traditional-
ism personality traits. The remaining trait
complexes overlap to a degree, the third
trait complex “Science/Math” is not pos-
itively associated substantially with any
personality traits, but includes Visual Per-
ception and Math Reasoning Abilities, and
Realistic and Investigative interests. The
last trait complex, “Intellectual/Cultural”
includes abilities of Gc and Ideational
Fluency, personality traits of Absorption,
TIE [Typical Intellectual Engagement], and
Openness, as well as Artistic and Inves-
tigative interests.”(Ackerman & Heggestad,
1997, p.238)

These trait complexes lie at the heart
of Ackerman’s (1996) investment theory of
adult intellectual development. The theory,
called PPIK, for intelligence-as-Process,
Personality, Interests, and intelligence-as-
Knowledge, along with a set of different
outcome knowledge domains is illustrated
in Figure 9.3. Briefly, the theory describes
how individual investments of fluid intel-
lectual abilities (processes like memory and
reasoning) are guided by trait complexes
that are facilitative (e.g., science/math and
intellectual/cultural) and impeding (e.g.,
social) constellations of personality, self-
concept, and interest traits. These invest-
ments, in turn, affect both the development
of domain-specific knowledge (such as sci-
ence or humanities knowledge), and gen-
eral crystallized abilities. In this framework,
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Figure g.2. Trait complexes, including abilities, interests, and personality
traits showing positive commonalities. Shown are: (1) Social, (2) Clerical/
Conventional, (3) Science/Math, and (4) Intellectual/Cultural trait
complexes. From Ackerman & Heggestad (1997). Copyright American

Psychological Association. Reprinted by permission.

expert knowledge is obtained when there
is a confluence of high intellectual abili-
ties and high levels of affective and cona-
tive traits that are aligned with the par-
ticular knowledge domain. When abilities
are moderate or low, but personality and
interests are well aligned with the knowl-
edge domain, some compensation is possi-
ble through investments of greater time and
effort. However, even when suitable abili-
ties are high for a particular domain, lower
levels of matching personality and interests
will likely tend to preclude development of
expert levels of performance.

In several studies (e.g., Ackerman, 2000;
Ackerman, Bowen, Beier, & Kanfer, 2001;
Ackerman & Rolthus, 1999) these trait
complexes (and a few others) have been
shown to be useful predictors of individ-
ual differences in domain knowledge among
college students and middle-aged adults.
Such results support the broader tenets of
the PPIK investment approach, but they
also show that the panoply of possible
trait predictors across cognitive, affective,
and conative variables could very well be
reduced to a manageable set of complexes

for practical predictive purposes. Although
the trait complex approach has yet to be
explored in terms of predicting individ-
ual differences in expertise within a sin-
gle job classification or task performance,
this approach appears to have promise both
for improving understanding of what fac-
tors determine ultimate expert performance
achievement and for providing a small
number of predictors that could be used
diagnostically in expertise development
contexts.

Classification Issues

One of the fields of psychometric appli-
cations that has been less explored out-
side of vocational counseling and large-scale
selection (e.g., military placement) is the
concept of “classification.” Whereas occu-
pational/educational selection starts with a
larger number of applicants than positions
to fill, and focuses on which candidates will
be the most likely to succeed, classification
starts with the assumption that most, if not
all, of the applicants will be selected, and
the goal is to match the applicant with the
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“intelligence-as-process;” Gc = crystallized intelligence. From Ackerman,
Bowen, Beier, & Kanfer (2001). Copyright American Psychological

Association. Reprinted by permission.

most suitable vocational/educational oppor-
tunities. Guidance counselors often try to
operate in the classification context in that
a major goal is to find the most suit-
able vocational path for each individual.
From a psychometric perspective, attention
is focused not specifically to level of ability,
but rather to the pattern of strengths and
weaknesses, so that the individual can effec-
tively optimize the congruence of his/her
characteristics and the relative demands of
the occupation or educational opportunity.
In this context, profiles of trait complexes
have potential for predicting which educa-
tional and occupational opportunities will
best match the individual’s relative strengths
and weaknesses.

Also, information about the individual’s
knowledge structures (i.e., the patterns of
domain-specific knowledge and skills that
the individual has) can also be used in
the classification context, mainly because
of the extensive body of research that has
demonstrated that transfer-of-training from
existing knowledge to new knowledge is
more effective than novel learning. Thus,
a psychometric approach to assessing the
existing knowledge and skills of individuals
might provide for more effective educational
and vocational guidance, especially when
this information is integrated with mea-
surement of the cognitive/affective/conative
trait complexes that indicate the individual’s
dispositions toward or away from particular
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domains. Ultimately, the classification goal
is to maximize the congruence between the
individual’s characteristics and the charac-
teristics of the job or educational program.

Discussion and Challenges
for Future Research

In this chapter we have reviewed how psy-
chometrics plays an important role in mea-
suring the development of expertise and
the prediction of individual differences in
expert performance. Concepts of reliabil-
ity and validity are central to all aspects
of quantitative psychological research, but
these concepts are too often implicit in
experimental research, often to the detri-
ment of the usefulness of the research. In
the study of individual differences, reliability
and validity are explicitly considered as inte-
gral to both theory and application. Special
issues of measuring change and the problems
associated with restriction of range in per-
formance were reviewed, as these present
challenges to many studies of expert perfor-
mance.

Over the past century, there have been
hundreds of studies that have focused on
predicting individual differences in the per-
formance of laboratory tasks, achievement in
educational settings, and occupational per-
formance. We have described only a few
illustrative examples of theory and empiri-
cal results from these investigations, as they
relate to cognitive, affective, and conative
traits. Two general sets of findings are noted
below, along with a third domain of exper-
tise that presents both opportunities and fur-
ther challenges to theory and application,
as follows:

1. For tasks that require significant percep-
tual and motor components, most of the
existing literature focuses on the effec-
tiveness of ability predictors of individ-
ual differences in the development and
expression of expert performance. Gen-
eral and broad cognitive abilities are most
effective in predicting success with novel
tasks, but perceptual and psychomotor

abilities are often just as effective, if
not more so, in predicting expert per-
formance after extensive task practice.
When the tasks are straightforward and
accessible to most learners, cognitive
abilities generally show lower predictive
validity as expertise develops.

. For tasks that are predominantly based

on domain knowledge and skills, we
reviewed some of the findings for vari-
ous trait predictors of expertise. It appears
that a heuristically useful approach
to understanding and predicting indi-
vidual differences in the development
and expression of expertise in domain-
knowledge tasks is one that focuses on
the long-term investment of cognitive
(intellectual) resources, through a small
number of trait complexes (made up of
cognitive, affective, and conative traits),
leading to differences in the breadth and
depth of domain knowledge and skills.
Two trait complexes (science/math and
intellectual/cultural) appear to be facili-
tative in the development of knowledge
about different domains, whereas other
trait complexes (e.g., Social) may impede
the development of traditional domains
of expert knowledge (e.g., academic and
occupational knowledge).

. In addition to these two types of expert

performance, there is another one that
has not received anywhere near the same
level of attention — namely, expertise in
interpersonal tasks. As noted by Hunt
(1995), in the United States, there has
been an increase in the number of jobs
that are highly dependent on interper-
sonal skills — mostly in the service indus-
tries (e.g., child care worker, customer
service representative) — an increase that
has been concomitant with declines in
the manufacturing and traditionally blue-
collar jobs. To date, there is too little avail-
able information on even how to iden-
tify and describe expert performance in
this domain. We can speculate that there
are affective and conative traits that may
be effective predictors of expertise in this
domain. There is both historical (e.g.,
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Ferguson, 1952) and current research (e.g.
Barrick & Mount, 1991) that is consis-
tent with this speculation. There is much
more theory and research needed on the
criterion side of the equation, along with
a need for additional predictors on the
cognitive/predictor side of the equation,
before it will be possible to evaluate how
well we can predict expertise in the inter-
personal domain.
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CHAPTER 10

Laboratory Methods for Assessing
Experts’ and Novices’ Knowledge

Michelene T. H. Chi

Introduction

Expertise, by definition, refers to the mani-
festation of skills and understanding result-
ing from the accumulation of a large body
of knowledge. This implies that in order to
understand how experts perform and why
they are more capable than non-experts,
we must understand the representation of
their knowledge, that is, how their knowl-
edge is organized or structured, and how
their representations might differ from those
of novices. For example, if a child who is
fascinated with dinosaurs and has learned
a lot about them correctly infers attributes
about some dinosaurs that was new to
them by reasoning analogically to some
known dinosaurs (e.g., the shape of teeth
for carnivores versus vegetarians), we would
not conclude that the “expert” child has a
more powerful analogical reasoning strat-
egy. Instead, we would conclude that such
a global or domain-general reasoning strat-
egy is available to all children, but that
novice children might reason analogically to
some other familiar domain, such as animals

(rather than dinosaurs), as our data have
shown (Chi, Hutchinson, & Robin, 198¢).
Thus, the analogies of domain-novice are
less powerful not necessarily because they
lack adequate analogical reasoning strategies,
although they may, but because they lack the
appropriate domain knowledge from which
analogies can be drawn. Thus, in this frame-
work, a critical locus of proficiency lies in the
representation of their domain knowledge.

This chapter reviews several methods that
have been used to study experts in the
laboratory, with the goal of understanding
how each method reveals the structure of
experts’ knowledge, in contrast to that of
novices. The theoretical assumption is that
the structure or representation of experts’
knowledge is a primary determiner of how
experts learn, reason, remember, and solve
problems.

This chapter has three sections. It starts by
briefly reviewing the historical background
to studies of the experts’ representations.
The second section describes four general
types of methods that have been commonly
used to study expert knowledge. Finally, I

167
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briefly summarize what these methods can
uncover about differences in the knowledge
representations of experts and novices.

A Brief History on Representation
in the Study of Expertise

The studies of representation in expertise
have historically been intimately related to
the type of problems being used. In early
research on problem solving, the study of
representation was carried out in the context
of insight-type problems, such as Duncker’s
(1945) candle problem. The goal of this
problem is to mount three candles at eye
level on a door. Available to use for this prob-
lem are some tacks and three boxes. Partic-
ipants were presented with the tacks either
contained in the three boxes or outside of
the boxes so that the boxes were empty. The
solution requires that one re-represents the
function of the boxes not as a container but
as a platform that can be mounted on a wall
to hold a candle. All the participants pre-
sented with the empty boxes could solve the
problem, whereas less than half of the par-
ticipants given the full boxes could solve it.

The key to all of these kinds of insight
problems is to re-represent the problem in
a way to either release a constraint that is
commonly assumed, or to think of some new
operator, that is again not the conventional
one. So in the case of the candle problem,
one could say that the conventional func-
tional attribution that one applies to boxes
is use as a container. Solving the problem
requires thinking of a new function or affor-
dance for boxes, in this case, as objects that
can hold things up rather than hold certain
kinds of things inside.

Although insight problems investigated
the role of representation in the under-
standing phase of problem solving (i.e., how
the elements, constraints, and operators of
a problem are encoded and interpreted),
insight problems did not lend themselves
well to the study of expertise. That is, since
expertise is defined as the accumulation of a
large storehouse of domain knowledge, it is

not clear how and/or what domain knowl-
edge influences the solution of insight prob-
lems.

A next generation of problem-solving
research explored both knowledge-lean
(puzzle-like) problems (such as the Tower
of Hanoi) as well as knowledge-rich prob-
lems (such as in chess). Even though chess
is arguably more knowledge-rich than the
Tower of Hanoi problem, it shares similar-
ities with puzzles and other “toy” domains
in that the understanding phase of the rep-
resentation had been assumed to be straight-
forward (But see Ericsson, Chapter 13, and
Gobet and Charness, Chapter 30). That is,
for a domain such as chess, the understand-
ing phase of the representation needs to
include the chess pieces, the permissible
operators (or moves) for each kind of chess
piece, and the goal state of checking and win-
ning. In short, the understanding phase of
the representation had been assumed to not
clearly discriminate experts from novices.

If understanding is not the phase that
affects the choice of efficient moves, then
what is? One obvious answer is how effec-
tively a solver can search for a solution. The
classical contribution by Newell and Simon
(1972) put forth the idea that what differen-
tiates experts from novices is the way they
search through “problem spaces.” A problem
space includes not only the elements, the
operators, but also all the possible or permis-
sible “states” created by the application of
operators to the elements, which are entailed
by the permissible strategies for guiding the
search through this problem space. In this
perspective, a representation is a model of
the search performance of a solver on a spe-
cific problem (Newell & Simon, 1972). Thus,
a “problem representation” consists of:

1. An understanding phase — the phase in
which information about the initial state,
the goal state, the permissible operators,
and the constraints is represented (so for
chess, that would be the pieces and their
positions on the chess board, the moves

allowed and disallowed for each kind of

chess piece, etc.), and



REPRESENTATIONS OF EXPERTS AND NOVICES  KNOWLEDGE 169

2. A search phase — the phase in which
a step-by-step search path through the
problem space is represented.

Because the understanding phase had been
assumed to be straightforward, differences
between experts and novices are assessed via
comparing differences in the search phase.
A variety of different search heuristics have
been identified, such as depth-first versus
breadth-first searches, backward versus for-
ward searches, exhaustive versus reduced
problem-space searches, and so forth.

This view — that differences in search
strategies or heuristics accounted for dif-
ferences in expertise — was also applied
to knowledge-rich domains for which the
understanding phase may not be so straight-
forward. A perfect example is the work
of Simon and Simon in the domain of
physical mechanics. In this research, Simon
and Simon (1978) compared the problem-
solving skills of an expert and a novice by
representing their solution paths in terms
of a sequence of equations (a set of pro-
ductions or condition-action rules) that they
used to solve a physics problem. Based
on this sequencing, the expert’s representa-
tion was characterized as a forward-working
search (working from initial state toward the
desired end state in a series of steps), whereas
the novice’s representation was character-
ized as a backward-working search (work-
ing from the desired end state back to the
initial state). Thus, the postulated repre-
sentational difference between the expert
and the novice was restricted to the search
phase, even though the understanding phase
may be a more crucial component for this
knowledge-rich domain.

The revelation that search may not be
the entire story came from the work of de
Groot (1966). He found that world-class
chess players did not access the best chess
moves from an extensive search; rather, they
often latched onto the best moves immedi-
ately after the initial perception of the chess
positions. For example, de Groot could not
find any differences in the number of moves
considered, the search heuristics, or the

depth of search between masters and less-
experienced (but proficient) players. What
he did find was that the masters were able
to reconstruct a chess position almost per-
fectly after viewing it for only 5 seconds. This
ability could not be attributed to any supe-
rior general memory ability, for when the
chess positions were “randomized,” the mas-
ters performed just about as poorly as the
less-experienced players. This finding sug-
gests that the masters’ superior performance
with meaningful positions must have arisen
from their ability to perceive structure in
such positions and encode them in chunks.

The findings that chess experts can per-
ceive coherent structures in chess positions
and rapidlly come up with an excellent
choice of moves suggest that the understand-
ing phase must be more than merely the
straightforward encoding of the elements
and permissible operators to apply to the ele-
ments. Moreover, the application of differ-
ent search heuristics cannot be the character-
ization that differentiates the experts from
the novices in the search phase. Thus, what
differentiated the experts and the novices’
problem representation is determined by the
representation of their domain knowledge,
of chess in this case. This recognition led
Chase and Simon (19734, b) to the identi-
fication and characterization of the struc-
tures or chunks of meaningful chess pat-
terns in memory. Thus, the work of de Groot
(1966) and Chase and Simon (19733, b) rep-
resented a first attempt at representing not
just a problem solution, but knowledge of
the domain. Subsequent work on expertise
attempted to focus on how domain knowl-
edge is represented in a way that leads to
better solutions.

For example, we have shown that expert
physicists’ representation of their domain is
more principle based, whereas novices’ rep-
resentations are more situation or formula
based (Chi, Feltovich, & Glaser, 1981). Thus,
the expertise work in the '8os reemphasized
the understanding phase of representation,
but it differed from the earlier work on
insight and other knowledge-lean problems
in that the focus was on the structure and
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organization of domain knowledge, and not
merely the structure of the problem.

The next challenge for researchers is to
combine the understanding phase and the
search phase of a representation in order
to understand how it differentiates experts
from novices. In addition, new challenges
are also presented when expertise is being
investigated in real-world domains. Many
complexities are involved when one stud-
ies expertise in real-world domains, where
problems are complex and dynamic, so that
the “space” is constantly changing with con-
textual dependencies and contingencies. In
this kind of real-world scenarios, the space-
search model of problem solving does not
always apply as an explanatory mechanism.
It is also essentially mute about problem
finding, which is a main phenomenon in real-
world problem-solving (see Klein, Pliske,

Crandall, & Woods, 20053).

Empirical Methods to Uncover
Representational Differences

The nature of expertise can be ascertained in
two general ways. One way is to see how they
perform in tasks that are familiar or intrinsic
to their domain of expertise. For example,
selecting the best chess move, generating the
optimal blueprint, or detecting a cancerous
mass on X-rays are tasks that are intrinsic
to the domains of chess playing, on being
an expert architect, and on being an expe-
rienced radiologist. This has been referred
to as the study of performance at “familiar
tasks” (Hoffman, 1987; Hoffman, Shadbolt,
Burton, & Klein, 1995). Although these
tasks might be abridged or in many ways
adapted for empirical investigation under
conditions of experimental control and
the manipulation of variables, they are
nevertheless more-or-less representative of
what the domain experts do when they are
doing their jobs.

Alternatively, one can use contrived tasks
(Hoffman, 1987; Vicente & Wang, 1998) that
are likely to be either unfamiliar to the prac-
titioner, or that depart more radically from

their familiar intrinsic tasks. Contrived tasks
serve different purposes so that there is a
continuum of contrived tasks, based on the
degree of modifications to the familiar task
in order to “bring the world into the labo-
ratory,” as it were (Hoffman et al., 1995).
However, there is a set of standard tasks that
are commonly undertaken in psychological
laboratories, such as recall. Recall of chess
positions, for example, can be considered a
contrived task since chess experts’ primary
skill is in the selection of the best moves, not
in recalling chess patterns. Although experts
do recall games for a number of reasons (e.g.,
knowledge sharing), asking them to recall
chess patterns can be thought of as a con-
trived task.

It is often the case that asking experts to
perform in their familiar intrinsic tasks will
show only that they are faster, more error
free, and in general better in all ways than
the novices. Their efficiency and speed can
often mask how their skills are performed.
Asking experts to perform contrived tasks,
on the other hand, can have several advan-
tages. First, a contrived task is often one that
can be undertaken just as competently by a
novice as an expert. Thus, it is not merely
the completion, efficiency, or correctness
of performance at a contrived task that is
being evaluated, but rather, what the perfor-
mance reveals about the knowledge struc-
ture of the individual, whether an expert
or a novice. More importantly, a contrived
task can shed light on experts’ shortcomings
(see Chi, Chapter 2), whereas an intrinsic
task will not, by definition of expertise. A
key limitation of contrived tasks, however, is
that if the contrived task departs too much
from the familiar task (e.g., lacks ecological
validity and/or representativeness), then the
model of performance that comes out may
be a model of how the person adapts to the
task, not a model of their expertise.

In this section, I describe four contrived
tasks that have been used most extensively in
laboratory studies of expertise with the goal
of uncovering representational differences.
The four methods are: recalling, perceiving,
categorizing, and verbal reporting. Studies
using these four methods are grouped on
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the basis of the tasks that were presented to
the participants, and not the responses that
they gave. For example, one could present
a perceptual task and ask for verbal reports
as responses. However, such a task would
be classified here as a perceptual task and
not a verbal reporting task. Clearly there are
many combinations of methods and many
optional ways to classify a task used in a spe-
cific study. The choice here reflects only the
organization of the presentation in this chap-
ter. Moreover, many studies use a combina-
tion of several methods.

RECALL

One of the most robust findings in exper-
tise studies comes from using the method of
free recall. Experts excel in recalling mate-
rials from their domain of expertise, such
as better, faster, and more accurate recall,
in domains ranging from static chess posi-
tions (Chase & Simon, 19732) to dynamic
computer-simulated thermal-hydraulic pro-
cess plant (Vicente, 1992). The classic study
by de Groot (1966) in the domain of
chess involved presenting chess players with
meaningful chess boards for a brief inter-
val, such as 5 seconds, to see how many
pieces they could recall by reproducing the
arrangements of the pieces on a blank board.
Chess masters were able to recall the posi-
tions almost perfectly (consisting of around
25 pieces). Less experienced players, on the
other hand, typically recall only about 5 to
7 pieces (Chase & Simon, 19732). However,
when de Groot (1966) asked the players to
find the best move, the masters and the less
experienced players did not differ signifi-
cantly in the number of moves they searched
nor the depth of their search, even though
the masters were always able to find and
select the best move. Likewise, Klein, Wolf,
Militello, and Zsambok (1995) found that
the first move that expert chess players con-
sider is significantly better than chance. Fur-
thermore, chess experts do not differ from
class-C players in the percentage of blunders
and poor moves during regulation games,
but do differ during blitz games. In fact, the
experts showed very little increase in rate
of blunders/poor moves from regulation to

blitz, but the class-C players showed a big
difference (Calderwood, Klein, & Crandall,
1988).

These findings suggest that it is not
the experts’ superior search strategies that
helped them find the best move. Neither
can the master players’ superior recall be
attributed to any differences in the mem-
ory capacities of the master and less experi-
enced players, since masters can only recall a
couple more pieces when the pieces are ran-
domly placed on the chess board (Chase &
Simon, 19732).

This same pattern of results was also
obtained when Go (or Gomoku) play-
ers were asked to recall briefly presented
Gomoku (or Go) board patterns. Both Go
and Gomoku utilize the same lattice-like
board with two different colored stones, but
the object of the two games is very different:
In Go the goal is to surround the opponent’s
stone and in Gomoku it is to place five stones
in a row (Eisenstadt & Kareev, 1975). The
success of players in recalling board configu-
rations suggests that it is the meaningfulness
of the configurations that enables the strong
players’ better recall.

In order to understand how experts and
novices might organize their knowledge to
result in differential recall, Chase and Simon
(19732,b) incorporated two additional pro-
cedures in conjunction with their recall
procedure, both aimed at segmenting the
sequence in which players place the chess
pieces during recall. The first procedure
tape-recorded players as they reproduced
chess pieces from memory and used the
pauses in their placement of pieces to seg-
ment the sequence of placements. The sec-
ond procedure was to modify the task from
a recall to a visual memory task. In this
modified visual task, players were simply
asked to copy chess positions. The head
turns they made to view the positions in
order to reproduce the chess positions were
used to segment the sequence of placements,
that is, to reveal how the game arrays were
“chunked.” The results showed that players
recalled positions in rapid bursts followed
by relatively longer pauses (i.e., > 2 sec-
onds), and they reproduced a meaningful
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cluster of pieces after a head turn. Because
the master players recalled and reproduced a
greater number of pieces before a long pause
and a head turn, respectively, these two
results, together, suggest that chess experts
had many more recognizable configurations
of chess patterns in their knowledge base,
and these configurations (based on power
in controlling regions of the board) were
comprised of a greater number of pieces.
The representational differences between
the masters and less proficient players were
that the masters had a greater number of
recognizable patterns (or chunks) in mem-
ory, and each pattern on average contained
a greater number of pieces.

More important, when memory perfor-
mance was reanalyzed in terms of experts
and non-expert chunks, the number of
chunks recalled by experts and non-experts
were now about the same, implying that
their basic memory capacity is not that dif-
ferent after all, validating the finding of the
depressed expert-recall performance for ran-
domized board arrangements. The findings
of equivalent recall for randomized positions
and equivalent recall in terms of number of
patterns, together, confirm that both expert
and non-expert players are subject to the
same short-term memory capacity limita-
tions, but the limitation is not the point. The
pointis how people come to create meaning-
ful chunks.

The recalled chess patterns (as deter-
mined by segregated pauses and head turns),
when analyzed in detail, showed that they
tended to consist of commonly occurring
patterns that are seen in regular routine
playing of chess, such as clusters in attack
and defense positions. It seems obvious that
such “local” patterns may be used to form
representations at a higher level of familiar
“global” patterns. Direct evidence of such a
hierarchical representation can be seen also
in the domain of architecture. Using the
same recall procedure, looking at pauses,
Akin (1980) uncovered a hierarchical repre-
sentation of blueprints, with such things as
doors and walls at the lowest level and rooms
at a higher level, and clusters of room at the
highest level.

The chunking of patterns into a hierarchi-
cal representation applies not only to games
and architecture, but to other domains, such
as circuit fault diagnosis. Egan and Schwartz
(1979) found that expert circuit technicians
chunk circuit elements together according
to the function, such as chunking resistors
and capacitors because together they per-
form the function of an amplifier. Here too,
chunking leads to superior recall for experts
as compared to non-experts. Moreover, the
skilled electronic technicians’ pattern recall
was faster and more accurate, again suggest-
ing that the local patterns formed higher-
order patterns.

The recall superiority of experts can be
captured not only in visual tasks, but also in
verbal tasks. Looking at a practical domain,
Morrow, Mernard, Stine-Morrow, Teller, and
Bryant (2001) asked expert pilots and some
non-pilots to listen to Air Traffic Control
messages that described a route through an
air space. Participants were then asked to
read back each message and answer a probe
question about the route. Expert pilots were
more accurate in recalling messages and in
answering the question than non-experts.

In sum, several different types of recall-
related contrived tasks provide some insight
into the experts’ and non-experts’ represen-
tation of their domain, such as patterns of
familiar chunks, clusters of circuit elements
with related function, and hierarchical orga-
nization of chunks.

PERCEIVING

Perception tasks address the issue of what
experts versus non-experts perceive in a
given amount of time (Chase & Chi, 1981).
A good example of a perceptual task is
examining X-ray films. Although the goal
of examining X-ray films is usually to diag-
nose disease, one can also determine what
experts and novices see (literal stimulus fea-
tures) and perceive (meanings of the fea-
tures or patterns of features). Lesgold et al.
(1988) asked four expert radiologists with
10 or more years of experience after res-
idency, and eight first-to-fourth year resi-
dents to examine X-ray films for as long as
they wished, commenting on what they saw
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as well as verbally expressing their diagnoses.
Although diagnosis is the familiar intrin-
sic task, the participants were also asked to
undertake a more contrived task, which was
to draw contours on the films showing what
they believed to be the problematic areas,
as a way of identifying the relevant features
they saw. (The films showed diseases such as
multiple tumors or collapsed lung.) Two of
the four experts, but only one of the eight
residents, diagnosed the collapsed lung film
accurately. Did they see the features in the
films differently? Both experts and residents
saw the main feature, which was the col-
lapse of the middle lobe, producing a dense
shadow. However, this feature can lead only
to a tumor diagnosis; the correct diagnosis of
collapsed lung must require seeing the dis-
placed lobe boundaries or hyperinflation of
the adjacent lobes. Residents did not see the
more subtle cues and the relations among
the cues.

In addition to the accuracy of the diag-
noses, the researchers looked at two kinds
of coding of the protocols. The first coding
was the diagnostic findings, which referred
to the attribution of specific diagnostic prop-
erties in the film. For example, one finding
might be “spots in the lungs.” The second
coding was the meaningful clusters. A clus-
ter is a set of findings that had a meaningful
path or reasoning chain from each finding
to every other finding within the set. That
is, the participants would relate the features
logically to entail a diagnostic explanation.
For example, if the participants commented
that such spots might be produced by blood
pooling, which in turn could have been pro-
duced by heart failure, then such a reasoning
chain would relate the findings into a cluster.
The results showed that the experts identi-
fied around three more findings per film, and
had about one more cluster than the resi-
dents. This suggests that the experts not only
saw more critical features on a film than the
residents, but perceived more interrelations
among the features.

Moreover, experts had finer discrimina-
tions. For example, the tumor film showed a
patient with multiple tumors. For this tumor
film, residents tended to merge local fea-

tures (the tumors) as “general lung haziness.”
Thatis, they interpreted the hazy spotsin the
lungs as indicating fluid in the lungs, suggest-
ing congestive heart failure, whereas experts
saw multiple tumors. Residents also saw the
heart as enlarged, while the experts did not.
Residents also interpreted the cues or fea-
tures they saw rather literally. For example,
alarge size heart shadow implied an enlarged
heart, whereas experts might adjust their
evaluation of the heart to other possibilities,
such as a curvature in the spine.

The results of this study show basically
that experts perceive things differently from
non-experts. There are many other studies
that show the same kind of results (see Klein
& Hoffman, 1992). This includes the percep-
tion tasks of reproducing chess board pat-
terns as discussed earlier. Reitman (1976)
also replicated the Chase and Simon (1973 2)
study for the game of Go. In addition to
asking participants to reproduce patterns
of Go stones as quickly and accurately as
possible while the stimulus board pattern
remained exposed throughout the trial, she
also asked the Go experts to draw circles (on
paper transcriptions of the real game posi-
tions) showing stones that were related, and
if appropriate, to indicate which groups of
stones were related on yet a higher strategic
level. The results showed that the experts
partitioned the patterns not into a strictly
nested hierarchy, but rather into overlap-
ping subpatterns, as one might expect given
the nature of Go — a given stone can par-
ticipate in, or play a strategic role in, more
than one cluster of stones. Although there
were no novice data on penciled partition-
ing, the expert’s partitioning into overlap-
ping structures suggests this more interre-
lated lattice-like (versus strictly hierarchical)
representation.

The perceptual superiority of experts
applies to dynamic situations as well, such as
perception of satellite infrared image loops
in weather forecasting (Hoffman, Trafton,
& Roebber, 2005), or watching a video-
tape of classroom lesson (Sabers, Cushing,
& Berliner, 1991). For example, when expert
and novice teachers were asked to talk out
loud while watching a videotaped classroom
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lesson that showed simultaneous events
occurring throughout the classroom, the
experts saw more patterns by inferring what
must be going on (such as “the students’
note taking indicates that they have seen
sheetslike this. ..”), whereas the non-expert
teachers saw less, saying that “I can't tell
what they are doing. They are getting ready
for class.” In short, the explanations experts
and non-experts can give reveal the fea-
tures and meaningful patterns they saw and
perceived.

A related task is detection of the presence
of features or events accompanied by mea-
surement of reaction times. For example,
Alberdi et al. (2001) asked some more- and
some less-experienced physicians to view
traces on a computer screen showing five
physiological measurements, such as heart
rate, transcutaneous oxygen, etc. The traces
represented both key events, such as devel-
oping pneumothorax, as well as more sec-
ondary but still clinically noteworthy events.
Although the less-experienced physicians
were almost as good in detecting and identi-
fying the key events, they were significantly
worse than the more-experienced physi-
cians in detecting the secondary events. The
more-experienced physicians were also sig-
nificantly better at detecting artifacts. This
suggests that they were not only better at
detecting secondary events, but that they
also made finer discriminations between
meaningful events versus literal stimulus
features.

It should perhaps be pointed out that
such results do not arise from experts hav-
ing better visual acuity. Nor do the results
mean that the experts’ perceptual superior-
ity is necessarily visual (vs. analytical). That
is, expertise involves perceiving more, not
just seeing more. To deny the first interpre-
tation, one can show that novices’ visual
acuity is just as good as experts in some
other domain for which they have no exper-
tise. However, expertise can enhance sensi-
tivity to critical cues, features, and dimen-
sions. Snowden, Davies, and Roling (2000)
found expert radiologists to be more sen-
sitive to low contrast dots and other fea-
tures in X-rays. This increased sensitivity

can be driven “top down” by more devel-
oped schemas (rather than a better devel-
oped acuity) since greater experience with
films means they have more familiarity with
both under- and overexposed films. To dis-
prove the second interpretation — that per-
ceptual superiority is necessarily visual — one
can show that experts can excel in per-
ception even if the materials are not pre-
sented visually, as in the case of chess masters
playing blindfolded chess (Campitelli &
Gobet, 2005) and expert counselors form-
ing an accurate model of a client from lis-
tening to a transcript of a counseling session
(Mayfield, Kardash, & Kivlighan, 1999).

In sum, this section summarized percep-
tion tasks and related contrived tasks such as
asking experts and novices to circle Go pat-
terns or draw contours of X-ray films. The
point of these studies is not merely to show
whether experts are superior in performing
these kinds of tasks, but to uncover their
underlying representations and skills that
derive from practice and perceptual learn-
ing, such as more interrelated clustering of
findings on X-ray films and their representa-
tion of secondary events.

CATEGORIZING

Sorting instances according to categories is
a simple and straightforward task that can
be readily undertaken by experts and non-
experts. One procedure is to ask participants
to sort problem statements (each problem
typed on a 3 x 5 card) into categories on
the basis of similarities in the solution or
some other functional categories. Chi et al.
(1981) solicited the participation of physics
graduate students (who technically would
be apprentices or perhaps journeymen on
the proficiency scale, but probably not fully
expert) and undergraduate students (who
had completed a semester of mechanics with
an A grade, making them “initiates” and not
really novices). They were asked to sort 24
physics problems twice (for consistency),
and also to explain the reasons for their sort-
ing. One would not necessarily expect quan-
titative differences in the sortings produced
by the two skill groups, such as the num-
ber of groups, or the number of problems in
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the groups — since anyone could sort prob-
lems on any of a nearly boundless number
of dimensions or criteria. The real interest
lies in the nature of the sortings. Based on
analyses of both the problems that the par-
ticipants categorized into the same groups
as well as their explanations for the sort-
ings, it became apparent that the under-
graduates grouped problems very differently
from the graduate students. The undergrad-
uates were more likely to base their sorting
on literal surface features, such as the pres-
ence of inclined planes or concepts such as
friction, whereas the graduate students were
much more likely to base their sorting on
domain principles that would be critical to
the solutions (e.g., such as problems that
involve Newton’s Second Law or the laws
of thermodynamics such as conservation of
energy). This finding was further replicated
by a specially designed set of problems that
had either the same surface features but dif-
ferent deep principles, or different surface
features but the same deep principles. The
same results emerged, namely, that under-
graduates sorted according to the surface
features and graduates tended to sort accord-
ing to the deep principles.

One interpretation of such results is that
the undergraduates’ schemas of problems
are based on physical entities and literal for-
mulas, whereas experts’ schemas are more
developed and organized around the prin-
ciples of mechanics. This means that the
explicit words or terminologies and dia-
grams used in the problem statements are
connected (in experts’ reasoning) to the
basic principles. However, that connection
is not necessarily direct. For instance, an
inclined plane per se does not by itself indi-
cate a Newton’s-Second-Law problem for an
expert physicist. An additional study asking
participants to cite the most important fea-
tures in a problem statement showed that
the words in the problem statements are
mediated by some intermediate concepts,
such as a “before and after situation.” Thus,
the words in a problem interact to entail con-
cepts, and experts’ solutions may be based on
these higher-level concepts (Chi et al, 1981;
Chi & Ohlsson, 20053).

Much research followed that replicated
the basic finding of shallow versus deep
representations for novices versus experts.
For example, when expert and novice pro-
grammers were asked to sort programming
problems, the experts sorted them accord-
ing to the solution algorithms, whereas the
novices sorted them according to the areas
of applications, such as creating a list of
certain data types (Weiser & Shertz, 1983).
Similarly, when expert and novice coun-
selors were asked to categorize client state-
ments from a counseling script as well as
to map the relationships among the cate-
gories, novices tended to categorize and map
on the basis of superficial details, such as
the temporal order of the client statements
(Mayfield et al., 1999), whereas the expert
counselors tended to categorize and map on
the basis of more abstract, therapeutically
relevant information. Similarly, Shafto and
Coley (2003) found that commercial fish-
ermen sorted marine creatures according to
commercial, ecological, or behavioral fac-
tors, whereas undergraduates sorted them
according to the creatures’ appearance.

Many variations of the sorting task have
also been used. One variation is to ask par-
ticipants to subdivide their groups further,
to collapse groups, or to form multiple and
differing sortings in order to shed light on
the hierarchical structure of their knowledge
representations (Chi, Glaser, & Rees, 1982).
For example, by asking a young dinosaur
“expert” to collapse his initial categories
formed about different types of dinosaurs,
the child would collapse them into two
major superordinate categories— meat-eaters
and plant-eaters (Chi & Koeske, 1983 )~ sug-
gesting that the superordinate categories are
somewhat well defined.

Another variation is a speeded category-
verification task. In such a task, a cate-
gory name appears first, followed by a pic-
ture. Participants press “true” if the picture
matched the word, such as a picture of a
dog with the term “animal,” and “false” if
it does not match, and reaction latencies
can be measured. Moreover, the words can
refer to a superordinate category such as
“animals,” a basic-object-level category such
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as “dog,” or a subordinate category such as
“dachshund.” The basic-object level is nor-
mally the most accessible level for catego-
rizing objects, naming objects, and so forth
(Rosch, Mervis, Gray, Johnson, & Boyes-
Braem, 1976). It has a privileged status in
that it reflects the general characteristics of
the human perceiver and the inherent struc-
ture of objects in the world (i.e., frequency of
experience and word use). The basic-object
level is also the first level of categorization
for object recognition and name retrieval.

Dog experts showed the typical pattern of
responses for their non-expert domain, such
as birds, in that their reaction times were
faster at the basic level than at the super-
ordinate or the subordinate levels (Tanaka
& Taylor, 1991; Tanaka, 2001). However, in
their domain of expertise, the experts were
just as fast at categorizing at the subordinate
level as they are at categorizing at the basic-
object level. For example, dog experts can
categorize a specific dog as a dachshund as
fast as they can categorize a dachshund as a
dog. This downward shift in the creation of a
second, more specific basic level in a hierar-
chy means that the experts’ hierarchies are
more differentiated even at the subordinate
level (see also Hoffman, 1987). Moreover,
this finer subordinate-level discrimination is
evident even in child “experts” (Johnson &
Eilers, 1998).

In sum, the categorization tasks described
here, consisting of sorting and category
verification, can reveal the structure of
experts’ knowledge, showing how it is more
fully developed and differentiated at both
the subordinate levels and the superordin-
ate levels.

VERBAL REPORTING

One of the most common methods in the
study of expertise is to elicit verbal reports.
(It should be keptin mind that verbal report-
ing and introspection are different in impor-
tant ways. Verbal reporting is task reflec-
tion as participants attend to problems. It
is problem centered and outward looking.
Introspection is to give judgments concern-
ing one’s own thoughts and perceptions.)
Verbal reporting, as a category of task, can

be done either as an ongoing think-aloud
protocol (Ericsson & Simon, 1984; see
Ericsson, Chapter 13), as answers to inter-
view questions (Cooke, 1994), or as expla-
nations (Chi, 1997).

These three techniques are quite differ-
ent. For concurrent think-aloud protocols,
the participants are restricted to verbalize
the problem information to which they are
attending. In interviews, especially struc-
tured interviews, the questions are usually
carefully crafted (i.e., to focus on a specific
topic or scenario) and are often sequenced
in a meaningful order (see Hoffman & Lin-
tern, Chapter 12). Explanations, on the other
hand, are given sometimes to questions gen-
erated by a peer, by oneself, or by an exper-
imenter. Explanations can be retrospective
and reflective. (Differences between think-
aloud protocols and explanations are elabo-
rated in Chi, 1997.) Not only are there dif-
ferent ways to collect verbal reports, but
there are other important issues that are
often debated. One issue, for example, con-
cerns whether giving verbal reports actu-
ally changes one’s processing of the task
(Nisbett & Wilson, 1977), and another issue
is whether different knowledge elicitation
methods elicit different “kinds” of knowl-
edge from the participants — the “differential
access hypothesis” (Hoffman et al., 1995).

Not only can verbal reports be collected
in several different ways, but they can be
collected within the context of any num-
ber of other tasks, such as a perception task,
a memory task, or a sorting task, as some
of our earlier examples have shown. Thus,
providing verbal reports can be a task in its
own right — as in the case of a free-flowing,
unstructured interview (Cullen & Bryman,
1988), or simply asking the participant to
say what he or she knows about a concept
(Chi & Koeske, 1983). But a verbal proto-
col can also be solicited in the context of
some other task (such as solving problems
or analyzing documents). However, to be
consistent with the heuristic of this chapter,
the studies below are grouped in this section
according to the main task presented to the
participants. In this regard it is worth noting
that in some domains, giving a concurrent
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or retrospective verbal report is part of the
familiar intrinsic task (e.g., coroner’s audio
record during autopsies; and during weather
forecasting briefings, forecasters think aloud
as they examine weather data).

The most difficult aspect of verbal report
methods is data analysis. That is, how does
one code and analyze verbal outputs? Again
there are many methods; they can only be
alluded to here (see Chi, 1997; Ericsson &
Simon, 1984, for explicit techniques, and
Ericsson, Chapter 13). Typically, think-aloud
protocols are analyzed in the context of the
cognitive task, which requires a cognitive
task analysis in order to know the functional
problem states that are to be used to cat-
egorize individual statements. The goal of
protocol analysis then is to identify which
sequence of states a particular participant
progresses through, and perhaps a computa-
tional model is built to simulate those steps
and the solution procedures. For explana-
tions, coding methods involve segmenting
and judging the content of the segments in
terms of issues such as whether it is substan-
tive or non-substantive (Chi, Siler, Jeong,
Yamauchi, & Hausmann, 2001), principle
oriented (deep) or entity oriented (shallow)
(Chietal., 1981). Note that an analysis of ver-
bal data means that the content of the data is
not always taken literally or word-for-word.
That is, we are not asking experts and novices
their subjective assessment of how they per-
formed, or how they have performed. This
is because much of expert knowledge is not
explicit nor subject to introspection.

How people perform can be captured
by the coding scheme. A study by Simon
and Simon (1978) provides a good exam-
ple. They collected concurrent protocols
from an expert and a novice as they were
solving physics problems. The researchers
coded only the equation-related parts of
the protocols. By examining what equa-
tions were articulated, and when, the
researchers were able to model (using a
production-system framework) each partic-
ipant’s problem-solving procedure and strat-
egy. The researchers showed that the expert
solved the problems in a forward-working
strategy, whereas the novice worked back-

ward from the goal (as one would predict
on the basis of studies described earlier in
this chapter). The same forward-backward
search patterns were obtained also in the
domain of genetics with experts and novices
(Smith & Good, 1984).

In a different kind of domain and task,
Wineburg (1991) asked historians and his-
tory students to give think-aloud proto-
cols while they constructed understanding
of historical events from eight written and
three pictorial documents. The participants’
task was to decide which of the three pic-
tures best depicted what happened dur-
ing the Battle of Lexington at the start
of the Revolutionary War, the event pre-
sented in the documents. Statements in
the participants’ picture-evaluation proto-
cols were coded into four categories: descrip-
tion, reference, analysis, and qualification.
Both experts and students provided descrip-
tive statements, but the experts made more
statements that fell into the other three
categories. This is not surprising since the
experts obviously had more to say, being
more knowledgeable. What is more interest-
ing is to identify the first category for which
both the experts and novices described the
picture using the same number of state-
ments. The quality of those descriptions was
different. Historians noted 25 of the 56 pos-
sible key features in the paintings that had
a bearing on the historical accuracy of the
paintings, whereas the students noted only
four features on average. Moreover, in select-
ing the most accurate painting, historians
did so on the basis of the correspondence
between the visual representations and the
written documents, whereas the students
often chose on the basis of the quality of the
artwork, such as its realism and detail. This
suggests that the experts’ representations
were much more meaningfully integrated.

Interviewing techniques can include both
open-ended questions and more direct ques-
tions. For example, Hmelo-Silver and Pfef-
fer (2004) asked experts and students both
direct questions about aquaria, such as
“What do fish do in an aquarium?’ and
open-ended questions, such as thinking out
loud while attempting to “Draw a picture
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of anything you can think is in an aquar-
ium.” Since biological systems and devices
often can be characterized by their struc-
ture, behavior, or function (Gellert, 1962;
Chi, 2000, p. 183; Goel et al., 1996), the
protocols were coded according to state-
ments relating to those three categories.
There were no differences between the
experts and the novices in the number of
statements referring to the structures, but
there were predictable and significant dif-
ferences in the number of statements refer-
ring to behaviors and functions. The novices
often did not offer additional behavioral or
functional information even when probed.
This suggests that the experts represent the
deeper features (i.e., behavior and function),
whereas novices think in terms of literal fea-
tures (i.e., the structure).

In sum, the goal of these verbal reporting
methods is to capture the underlying repre-
sentations of the experts and novices, such
as whether their searches are forward ver-
sus backward, whether their understanding
of pictures and text are integrated versus lit-
eral, or whether their understanding mani-
fest deep (behavioral and functional) versus
shallow (structural) features.

Representational Differences

If the difference in representation (reflect-
ing the organization of knowledge and not
just the extent of knowledge) is one key
to understanding the nature of expertise,
then in what ways do the representations
of experts and novices differ? In this sec-
tion, I briefly address dimensions of repre-
sentational differences, as captured by the
empirical tasks of recalling, perceiving, cat-
egorizing, and verbal reporting described
above. Each of these tasks has revealed
ways in which representations of experts and
novices differ.

KNOWLEDGE EXTENT

An obvious dimension of difference is that
experts have more knowledge of their
domain of expertise. More knowledge must

be measured in terms of some units. Without
being precise, a “bit” of knowledge can be a
factual statement, a chunk/familiar pattern,
a strategy, a procedure, or a schema. Chase
and Simon (19732, b) estimated an expert
chess (master-level) player to know between
10,000 and 100,000 chunks or patterns,
whereas a good (Class-A) player has around
1000 chunks; and Miller (1996, pp. 136-138)
estimated college-educated adults to know
between 40,000 to 60,000 words. Hoff-
man et al., (in press; Hoffman, Trafton, &
Roebber, 2006) estimate that it would take
thousands of propositions to capture the
expert weather forecaster’s knowledge just
about severe weather in one particular cli-
mate. Regardless of how one wishes to
quantify it, clearly, one can expect experts
to know more than non-experts (includ-
ing journeymen and especially compared to
apprentices, initiates, and novices). Indeed,
this is one definition of expertise. The recall
task summarized earlier also revealed how
the number of chunks and the chunk sizes
differ for experts versus non-experts.

Aside from the sheer number of “bits”
(however these are defined) in their knowl-
edge base, a related concept to the dimen-
sion of size is completeness. Completeness
has a different connotation than the idea of
merely greater amount or extent of knowl-
edge. In real-world domains knowledge is
always expanding. Any notion of “complete-
ness” becomes very slippery.

In terms of frame theory, one can con-
ceive of completeness in terms of the avail-
ability or number of slots, or necessary
slots. For example, a tree expert might have
slots for “susceptibility to different diseases”
with knowledge about potential diseases
(values) for each kind of trees, whereas a
novice might not have such slots at all.
The earlier-described finding from a per-
ception task showed that the more- (but
not the less-) experienced physicians were
able to recognize secondary events on traces
of physiological measurements (Alberdi et
al., 2001), can be interpreted to indicate
that the more-experienced physicians had
more complete frames or schemas. Greater
amount of knowledge might also refer to
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more details in the experts’ representation
than in novices’, for a particular domain.

Another way to discuss knowledge extent
is in terms of the content. Experts might not
have just more production systems than non-
experts for solving problems, but they might
have different production systems, as shown
by Simon and Simon’s (1978) study of physi-
cists using a verbal-reporting task. For exam-
ple, experts might have rules relevant to the
principles, whereas novices might have rules
relevant to the concrete entities in the prob-
lem statement (Chi et al., 1981). This can
mean that the experts’ production systems
are deeper and more generalizable.

In sum, differences in the size or extent
of the knowledge as a function of profi-
ciency level can be uncovered in a number of
contrived tasks that have been discussed in
this chapter.

THE ORGANIZATION OF KNOWLEDGE

The hierarchical representation of knowl-
edge can be inferred from the way experts
cluster in their recall, as in the case of recall-
ing architectural plans (Akin, 1980) and cir-
cuit diagrams (Egan & Schwartz, 1979). If
we therefore assume that representations
are sometimes hierarchical (depending on
the domain), then in what further ways
are the experts’ representations different
from novices?

One view is that non-experts might have
missing intermediate levels. For example,
using a recall task, Chiesi, Spilich, and
Voss (1979) found that individuals with
high or low prior knowledge of baseball
were equally capable at recalling individ-
ual sentences that they had read in a base-
ball passage. However, the experts were
better at recalling sequences of baseball
events because they were able to relate each
sequence to the high-level goals such as win-
ning and scoring runs. This suggests that
the basic actions described in the individual
sentences were not connected to the high-
level goalsin the novices’ understanding. Per-
haps such connections have to be mediated
by intermediate goals, which may be miss-
ing in novices’ hierarchical structure. The
same pattern of results was found in chil-

dren’s representation of knowledge about
“Star Wars.” The “Star Wars” game can be
represented in a hierarchical structure, con-
taining high-level goals such as military dom-
inance, subgoals such as attack/destroy key
leaders, and basic actions, such as going to
Yoda (Means & Voss, 1985).

Similar findings have been obtained also
in studies of medical domains, in which
physician’s diagnostic knowledge has been
represented in terms of hierarchical levels
(Patel & Arocha, 2001). In such a repre-
sentation, studies using a perception task
show that physical observations are inter-
preted in terms of findings, which are obser-
vations that have medical significance and
must be clinically accounted for. At the next
level are facts, which are clusters of findings
that suggest prediagnostic interpretation. At
the highest level are diagnoses. Novices’ and
experts’ representation can differ in that
novices can be missing some intermediate-
level knowledge, so that decisions are then
made on the basis of the findings level, rather
than the facts level.

A third way to conceive of differences in
hierarchical representations of experts and
novices is a in the level of the hierarchy that
is most familiar or preferred for domains
in which the hierarchical relationships is
one of class-inclusion. Expert versus non-
expert differences arise from the preferred
level within the hierarchy at which experts
and novices operate or act on. According
to Rosch et al. (1976), to identify objects,
people in general prefer to use basic-object-
level names (bird, table) to superordinate-
level names (e.g., animals, furniture). People
are also generally faster at categorizing
objects at the basic-object level than at the
superordinate or subordinate levels (e.g.,
robin, office chair). Experts, however, are
just as facile at naming and verifying the
subordinate-level objects as the basic-level,
suggesting that the overall preferential treat-
ment of the basic level reflects how knowl-
edge about the levels are structured, and not
that the basic level imposes a certain struc-
ture that is more naturally perceived. Using
a sorting task, this differentiated preference
for experts and novices has been replicated
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in several domains, such as birds (Tanaka &
Taylor, 1991), faces (Tanaka, 2001), dinosaurs
(Chietal., 1989), and geological and archae-
ological classification (Burton et al., 1987,
1988, 1990).

Just as the notion of knowledge extent
can be slippery (because knowledge is never
static), so too the notion of hierarchi-
cal memory organization can be slippery.
For example, instead of conceiving of non-
experts’ memory representation as missing
the intermediate levels, another view is that
their representations are more like lattices
than hierarchies (Chi & Ohlsson, 20053).
(Technically, a lattice would involve cross
connections that would be “category viola-
tions” in a strict hierarchy or “is-a” tree.) It
is valuable to look at an extreme, that is,
domains where everything can be causally
related to everything else, and neither hierar-
chies, lattices, nor chains suffice to represent
either the world or knowledge of the world,
such as the weather forecaster’s understand-
ing of atmospheric dynamics (e.g., thunder-
storms cause outflow, which in turn can trig-
ger more thunderstorms). We do not yet
have a clear understanding of how dynamic
systems are represented (Chi, 2005). On the
other hand, for a domain such as terrain
analysis in civil engineering, much of the
expert’s knowledge is very much like a hier-
archy, highly differentiated by rock types,
subtypes, combinations of layers of subtypes,
types of soils, soil-climate interactions, etc.
(Hoffman, 1987).

In sum, although any inferences about
knowledge representation need to be
anchored in the context of a specific
domain, contrived tasks such as recalling,
perceiving, and categorizing can allow us to
differentiate the ways experts’ and novices’
knowledge is organized.

“DEPTH” OF KNOWLEDGE

Representational differences can be char-
acterized not only by extent and orga-
nization, but also by dimensions such as
deep versus shallow, abstract versus con-
crete, function versus structure, or goal-
directed versus taxonomic. Such differences
have been revealed using a sorting task, to
show, for example, that physicists represent

problems at the level of principles, whereas
novices represent them at the concrete
level of entities or superficial features (Chi
etal., 1981), or that landscaping experts sort
trees into goal-derived categories (e.g., shade
trees, fast-growing trees, etc.), whereas tax-
onomists sort trees according to biological
taxa (Medin, Lynch, Coley, & Atran, 1997).

Such differences can be revealed also
in perception tasks. For example, a patient
putting his hands on his chest and leaning
forward as he walks slowly is interpreted by
novices merely as someone having back pain
(a literal interpretation), whereas a more
expert physician might interpret the same
observation as perhaps suggesting that the
patient has some unspecified heart problem
(Patel & Arocha, 2001). Differences can also
be revealed in a verbal reporting task, such as
explaining the behavior/function of fish in an
aquarium versus explaining the structure of
fish (Hmelo-Silver & Pfeffer, 2004). Differ-
ences can be revealed in a task that involves
explaining causal relationships — a novice’s
explanations might focus on the time
and place of an historical event, whereas
an expert’s explanations might focus on
using the time to reconstruct other events
(Wineburg, 1991).

In short, all four of the task types
reviewed here can reveal differences bet-
ween experts’ and novices’ representations
in terms of depth.

CONSOLIDATION AND INTEGRATION

A fourth dimension of representational dif-
ferences between experts and non-experts
is that the experts’ representation may be
more consolidated, involving more efficient
and faster retrieval and processing. A related
way to characterize it might be the integrat-
edness or coherence of a representation, that
is, the degree to which concepts and prin-
ciples are related to one another in many
meaningful ways (e.g., Falkenhainer, Forbus,
& Gentner, 1990; Schvaneveldt et al., 1985).
One interpretation of integratedness is the
interaction of features. Evidence for this
interpretation can be seen in physics experts’
and non-experts’ representations (Chi et al.,
1981), in which they identify features
that are combined or integrated to form
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higher-level concepts in a sorting task, as
well as in physicians’ ability to form clus-
ters of observations for their prediagnostic
interpretation in a perception task (Patel &
Arocha, 2001).

For example, given a physics problem
statement and asked to identify the features
that determine their basic approach to the
solution, novices will solve a problem on the
basis of the explicit concrete entities men-
tioned in the statement, whereas experts will
solve a problem on the basis of derivative
features (such as a “before and after” situa-
tion), in which the interactions of the con-
crete entities in the problem statement are
integrated to describe the problem situation
as “before and after” (see Chi et al., 1981,
Table 11). Tabulating the frequencies with
which the two experts and novices cited con-
crete entities (such as spring, friction) ver-
sus higher-level dynamic features (such as
a “before and after” situation, or a physi-
cal state change), there were 74 instances
in which the experts cited dynamic fea-
tures versus 21 references to concrete enti-
ties, whereas the reverse was true for novices,
who cited 39 instances of concrete entities
versus only two instances of dynamic fea-
tures. The more integrated nature of the
experts’ knowledge base was also reflected in
the reasoning chains that expert radiologists
manifested in their diagnoses, cited earlier
(Lesgold et al., 1988).

In short, recall, perception, and cate-
gorization tasks can all reveal differences
in the consolidation and integration of
representations.

Conclusion

The goal of this chapter was to describe
and illustrate the kind of laboratory meth-
ods that can be used to study the nature of
expertise. The four general types reviewed —
recall, perception, categorization, and ver-
bal reports — are domain independent, or
contrived tasks. These are tasks that are not
necessarily expressive of the skills of the
experts because they do not precisely mimic
the tasks the experts usually perform. But
these tasks, used often in the laboratories or

under controlled conditions (although they
can be used also in cognitive field research),
are suggestive of the ways that the mental
representations of experts and novices can
differ. The recall paradigm has revealed the
differences in experts’ and novices’ repre-
sentations in terms of chunks (coherent pat-
terns) and organized structure; perception
tasks have revealed phenomena of percep-
tual learning and differences in the salience
of relevant features and the interrelated-
ness or integration of cues into meaning-
ful patterns; and both the sorting and ver-
bal reporting tasks have revealed differences
in the depth and structure of knowledge
representations.

There are of course important deeper and
lingering issues that this chapter has not cov-
ered. A key issue is how exactly do the
experts’ knowledge representations facili-
tate or inhibit their performance for a spe-
cific skill. Some treatment of this issue
just for the task of memory recall can be
gleaned from papers by Ericsson, Delaney,
Weaver, and Mahadevan (2004) and Vicente
and Wang (1998). Moreover, although our
interest focuses on understanding “relative
expertise” (see Chi, Chapter 2), with the
assumption that novices can become experts
through learning and practice, in this chap-
ter I have said little about another important
issue of how one can translate differences in
the representations of novices and experts
into instruction and training (i.e., how we
can train novices to become experts).
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CHAPTER 11

Task Analysis

Jan Maarten Schraagen

Introduction

Analyses of tasks may be undertaken for
a wide variety of purposes, including the
design of computer systems to support
human work, the development of training,
the allocation of tasks to humans or ma-
chines, or the development of tests to certify
job competence. Task analysis is, therefore,
primarily an applied activity within such
diverse fields as human factors, human—
computer interaction, instructional design,
team design, and cognitive systems engi-
neering. Among its many applications is
the study of the work of expert domain
practitioners.

“Task analysis” may be defined as what a
person is required to do, in terms of actions
and/or cognitive processes, to achieve a sys-
tem goal (cf. Kirwan & Ainsworth, 1992,
p. 1). A more recent definition, which at first
sight has the merit of being short and crisp, is
offered by Diaper (2004, p. 15): “Task anal-
ysis is the study of how work is achieved by
tasks.” Both definitions are deceptively sim-
ple. They do, however, raise further issues,
such as what a “system” is, or a “goal,” or

“work,” or “task.” Complicating matters fur-
ther, notions and assumptions have changed
over time and have varied across nations.
It is not my intention in this chapter to
provide a complete historical overview of
the various definitions that have been given
for task analysis. The reader is referred
to Diaper and Stanton (2004), Hollnagel
(2003), Kirwan and Ainsworth (1992),
Militello and Hoffman (2006), Nemeth
(2004), Schraagen, Chipman, and Shalin
(2000), and Shepherd (2001).

It is important, however, in order to
grasp the subtle differences in task-analytic
approaches that exist, to have some histor-
ical background, at least in terms of the
broad intellectual streams of thought. Given
the focus of this handbook, this historical
overview will be slightly biased toward task
analysis focused on professional practition-
ers, or experts. After the historical overview,
the reader should be in a better position to
grasp the complexities of the seemingly sim-
ple definitions provided above. Next, I will
focus on some case studies of task analysis
with experts. This should give the reader
an understanding of how particular methods
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were applied, why they were applied, and
what their strengths and weaknesses were.
As the field is evolving constantly, I will end
with a discussion of some open avenues for
further work.

Historical Overview

Task analysis is an activity that has always
been carried out more by applied researchers
than by academic researchers. Academic
psychology often involves research in which
the experimenters create the tasks. Con-
versely, applied researchers look into their
world to investigate the tasks that peo-
ple perform in their jobs. Indeed, task
analysis originated in the work of the
very first industrial psychologists, includ-
ing Wundt’s student Hugo Miinsterberg
(see Hoffman & Deffenbacher, 1992). For
instance, early research conducted by the so-
called “psychotechnicians” (Miinsterberg,
1914) involved studies of the tasks of railway
motormen, and for that research, one of the
very first simulators was created.

The applied focus and origins may be
because the ultimate goal of task analysis
is to improve something — be it selection,
training, or organizational design. Given the
applied nature of task analysis, one may
hypothesize that there is a close connec-
tion between the focus of task analysis and
current technological, economical, political,
and cultural developments. One fairly com-
mon characterization of the past 100 years
is the following breakdown in three periods
(Freeman & Louga, 2001; Perez, 2002):

1. The age of steel, electricity, and heavy
engineering. Leading branches of the
economy are electrical equipment, heavy
engineering, heavy chemicals, and steel
products. Railways, ships, and the tele-
phone constitute the transport and com-
munication infrastructure. Machines are
manually controlled. This period, dur-
ing which industrial psychology emerged
(e.g., Viteles, 1932), lasted from approxi-
mately 1895-1940.

2. The age of oil, automobiles, and mass
production. Oil and gas allow massive
motorization of transport, civil economy,
and war. Leading branches of the econ-
omy are automobiles, aircraft, refineries,
trucks, and tanks. Radio, motorways, air-
ports, and airlines constitute the trans-
port and communication infrastructure.
A new mode of control emerged: super-
visory control, characterized by monitor-
ing displays that show the status of the
machine being controlled. The “upswing”
in this period lasted from 1941 until 1973
(Oil Crisis). The “downswing” of this era
is still continuing.

3. The age of information and telecommu-
nications. Computers, software, telecom-
munication equipment, and biotech-
nology are the leading branches of
the economy. The internet has become
the major communication infrastructure.
Equipment is “cognitively” controlled, in
the sense that users need to draw on
extensive knowledge of the environment
and the equipment. Automation grad-
ually takes on the form of intelligent
cooperation. This period started around
1970 with the emergence of “cognitive
engineering,” and still continues.

Each of these periods has witnessed its typi-

cal task-analysis methods, geared toward the
technology that was dominant during that
period. In the historical overview that fol-
lows, I will use the breakdown into three
periods discussed above.

The Age of Steel

Around 1900, Frederick Winslow Taylor
observed that many industrial organizations
were less profitable than they could be
because of a persistent phenomenon that
he termed “soldiering,” that is, deliberately
working slowly (Taylor, 1911/1998). Workers
in those days were not rewarded for work-
ing faster. Therefore, there was no reason to
do one’s best, as Taylor noted. Workers also
developed their own ways of working, lar-
gely by observing their fellow workers.



TASK ANALYSIS 187

This resulted in a large variety of infor-
mal, rule-of-thumb-like methods for carry-
ing out their work. Taylor argued that it was
the managers’ task to codify this informal
knowledge, select the most efficient method
from among the many held by the work-
ers, and train workers in this method. Man-
agers should specify in detail not only what
workers should be doing but how their work
should be done and the exact time allowed
for doing their work. This is why Taylor
called his analysis “time study.” Workers fol-
lowing these instructions in detail should
be rewarded with 30 to 100 percent wage
increases, according to Taylor (1911/1998,
p. 17). In this way, Taylor was certain he
would eliminate the phenomenon of work-
ing slowly. Another approach, pioneered
by Frank Gilbreth, was called “motion
study” and consisted of studying every
movement involved in a task in detail.
Gilbreth proposed to eliminate all unnec-
essary movements and to substitute fast for
slow motions.

Taylor’s approach has the modern ring to
it of what we now call “knowledge man-
agement.” One should recognize, however,
that the tasks he and others such as Gilbreth
considered consisted primarily of repetitive
manual operations, such as shoveling, pig
iron loading, bricklaying, and manufactur-
ing/assembly tasks. “Cognitive tasks” involv-
ing planning, maintaining situation aware-
ness, and decision making were not directly
addressed by this approach. Taylor was,
sometimes unjustly, criticized because of his
deterministic account of work, his view of
humans as machines, his notion that humans
are motivated only by monetary rewards,
and the utter lack of discretion granted
to workers.

Taylor’s lasting influence on task analysis
has been his analytical approach to decom-
posing complex tasks into subtasks, and the
use of quantitative methods in optimizing
task performance. By asserting that man-
agement should develop an ideal method
of working, independent of workers’ intu-
itions (or their “rule-of-thumb” method, as
Taylor called them), he foreshadowed con-
temporary discussions on the value of using

experts as sources of information. Indeed,
to understand various manufacturing jobs,
Taylor would first find people who were
very good (“experts”) and then bring them
into a laboratory that simulated their work-
place so that their activity might be studied.
Taylor’s time study continued to exert an
influence on determining optimal work lay-
out for at least half a century (Annett, 2000),
and it still is a major approach to job design
(Medsker & Campion, 1997).

Although World War I stimulated the
development of more sophisticated equip-
ment, particularly in the area of avionics,
there was little attention to controls and dis-
plays. Rather, the main focus was on pilot
selection and training (Meister, 1999). This
line of research resulted in the development
of the method of job analysis in the 1930s by
the U.S. Department of Labor (Drury et al.,
1987). Job analysis was devised to establish
a factual and consistent basis for identify-
ing personnel qualification requirements. A
job consists of a position or a group of sim-
ilar positions, and each position consists of
one or more tasks (Luczak, 1997). There-
fore, there is a logical distinction between
job analysis and task analysis: the techniques
employed in job analysis address a higher
level of aggregation than the techniques
employed in task analysis.

For instance, in a typical job analysis an
analyst would rate, on a scale, whether a par-
ticular job element, such as “decision mak-
ing and reasoning,” would be used very often
or very infrequent, and whether its impor-
tance is very minor or extreme. In a typ-
ical task analysis, on the other hand, an
analyst would decompose decision making
into its constituent elements, for instance,
“plausible goals,” “relevant cues,” “expectan-
cies,” and “actions” (Klein, 1993). Further-
more, the goals and cues would be spelled
out in detail, as would be the typical diffi-
culties associated with particular cues (e.g.,
Militello & Hutton, 1998). Similarly, when
analyzing the interaction between a human
and a machine, job analysis would rate
the extent and importance of this interac-
tion, whereas task analysis would specify in
detail how the human interacts with the

” o«
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machine, perhaps even down to the level of
individual keystrokes (e.g., Card, Moran, &
Newell, 1983). Job analysis and task analy-
sis may use the same methods, for instance,
interviews, work observation, and critical
incidents. However, as mentioned above,
these methods address different levels of
aggregation.

The Age of Oil

It was not until after World War II that task
analysis and human factors (the preferred
term in North America) or ergonomics
(the preferred term in Europe) began to
take on a decidedly more “cognitive” form.
This was initiated by the development of
information-processing systems and com-
puting devices, from the stage of manual
control to the stage of supervisory control
(Hollnagel & Cacciabue, 1999). Although
Tayloristic approaches to task analysis were
still sufficient in most of the work con-
ducted in the first half of the twentieth cen-
tury (when machines were manually con-
trolled), the development of instrumented
cockpits, radar displays, and remote process
control forced the human into a supervi-
sory role in which knowledge and cognition
were more important than manual labor, and
conditional branchings of action sequences
were more important than strictly linear
sequences of actions. Experience in World
War II had shown that systems with well-
trained operators were not always working.
Airplanes with no apparent mechanical fail-
ures flew into the ground, and highly moti-
vated radar operators missed enemy con-
tacts. Apparently, the emphasis on testing
and training had reached its limits, as had
Taylor’s implicit philosophy of designing the
human to fit the machine. Now, experimen-
tal psychologists were asked to design the
machine to fit the human.

MILLER: TASK DESCRIPTION AND TASK ANALYSIS

In 1953, Robert B. Miller had developed
a method for task analysis that went
beyond merely observable behavior (Miller,
1953; 1962). Miller proposed that each
task be decomposed into the follow-

ing categories: cues initiating action, con-
trols used, response, feedback, criterion of
acceptable performance, typical errors. The
method was of general applicability, but
was specifically designed for use in planning
for training and training equipment. Miller
adopted a systems approach to task analysis,
viewing the human as part of the system’s
linkages from input to output functions.

In his task-analysis phase, Miller included
cognitive concepts such as “goal orienta-
tion and set,” “decisions,” “memory storage,”
“coordinations,” and “anticipations.” These
“factors in task structure,” as he called the
concepts, are, to different degrees, inevitable
parts of every task. The task analyst needs
to translate the set of task requirements
listed in the task description into task-
structure terms. The next step would be
to translate the task-structure terms into
selection procedures, training procedures,
and human engineering. Take, for instance,
the task of troubleshooting. Miller provided
some “classical suggestions” on how to train
the problem-solving part of troubleshooting.
One suggestion was to “indoctrinate by con-
cept and practice to differentiate the func-
tion from the mechanism that performs the
function” (Miller, 1962, p. 224). Although
too general to be useful as a concrete train-
ing suggestion, this example predates later
concepts such as the “abstraction hierarchy”
introduced by Jens Rasmussen in 1979 (see
Vicente, 2001).

FLANAGAN: CRITICAL INCIDENT TECHNIQUE

The applied area of human-factors engineer-
ing was less reluctant to adopt cognitive ter-
minology than mainstream North American
academic psychology, which at that time
was still impacted by behaviorism. We have
already seen how Miller’s (1953) approach
to task analysis included cognitive con-
cepts. In 1954, Flanagan published his “crit-
ical incident technique” (Flanagan, 1954).
This is a method for collecting and ana-
lyzing observed incidents having special sig-
nificance. Although the modern-day reader
may associate incidents with severe disasters,
this was not Flanagan’s primary definition.
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During World War II, he and his cowork-
ers studied reasons for failure in learning
to fly, disorientation while flying, failures of
bombing missions, and incidents of effective
or ineffective combat leadership. After the
war, the method was also applied to non-
military jobs, such as dentistry, bookkeeping,
life insurance, and industry. These incidents
were collected by interviewing hundreds of
participants, resulting in thousands of inci-
dent records. Alternative methods of data
collection were group interviews, question-
naires, and written records of incidents as
they happened. These incidents were then
used to generate critical job requirements,
which in turn were used for training pur-
poses, job design, equipment design, mea-
sures of proficiency, and to develop selec-
tion tests. Flanagan (1954) did not provide
much detail on the reliability and valid-
ity of his technique, although he empha-
sized the importance of the reporting of
facts regarding behavior rather than resting
solely on subjective impressions. His tech-
nique demonstrates the importance of using
domain experts as informants about any
behavior that makes a significant contribu-
tion to the work that is carried out.

HIERARCHICAL TASK ANALYSIS

Although R. B. Miller had used cognitive
concepts in his method for task analysis, his
task descriptions were still tied very much
to actual human-machine interaction. His
task descriptions would therefore basically
be lists of physical activities. His concept
of user goals had more to do with the cri-
teria of system performance that the user
had to meet, than with a nested set of inter-
nal goals that drives user performance. A
method for task analysis that began by iden-
tifying the goals of the task was developed in
the 1960s by Annett and Duncan under the
name of Hierarchical Task Analysis (HTA)
(Annett & Duncan, 1967). In accordance
with the dominant industries during this
period (the Age of Oil), HTA was origi-
nally developed for training process-control
tasks in the steel and petrochemical indus-
tries. These process-control tasks involved

significant cognitive activity such as plan-
ning, diagnosis, and decision making.

In the 1950s and 1960s, manual-control
tasks had been taken over by automation.
Operators became supervisors who were
supposed to step in when things went
wrong. The interesting and crucial parts of
supervisory-control tasks do not lie with
the observable behavior, but rather with
unobservable cognitive activities such as
state recognition, fault finding and schedul-
ing of tasks during start-up and shutdown
sequences. Training for these tasks therefore
needed to be based on a thorough exami-
nation of this cognitive activity. Annett and
Duncan felt the existing methods for task
analysis (such as time and motion study
and Miller’s method) were inadequate to
address these issues. Also, they were more
clear about the need for task descriptions to
involve hierarchies (i.e., conditional branch-
ings versus linear sequences.) Hence hier-
archical task analysis. Complex systems are
designed with goals in mind, and the same
goals may be pursued by different routes.
Hence, a direct listing of activities may be
misleading (they may be sufficient for rou-
tine repetitive tasks, though). The analyst
therefore needs to focus on the goals.

Goals may be successively unpacked to
reveal a nested hierarchy of goals and sub-
goals. For example, thirst may be the condi-
tion that activates the goal of having a cup of
tea, and subgoals are likely to include obtain-
ing boiling water, a teapot with tea, and so
on. We may answer the question why we
need boiling water by referring to the top-
level goal of having a cup of tea. The analyst
needs to ask next how to obtain boiling water.
Whether the analyst needs to answer this
question is dependent on the purpose of the
analysis. If the purpose is to train someone
who has never before made a cup of tea, then
the subgoal of obtaining boiling water itself
needs to be unpacked further, for instance:
pour water in container, heat water, look for
bubbles.

Since a general purpose of HTA is to iden-
tify sources of actual or potential perfor-
mance failure, Annett and Duncan (1967)
formulated the following stop rule: stop with



190 THE CAMBRIDGE HANDBOOK OF EXPERTISE AND EXPERT PERFORMANCE
Operate Continuous-Process Plant
1. Start up 2. Start up after 3. Run plant 4. Carry out 5. Shutdown for
from cold intermediate shutdown emergency maintenance
crashdown

1. Monitor alarms, 2. Deal with 3. Collect samples 4. Adjust plant
instruments, and off-spec. and deal with lab. throughput
equipment conditions reports

1. Ensure plant
and services
available

2. Line up system

point

3. Bring system
pressure to set-

5. Hold pressure
at 72.5 and temp.
at 150

4. Warm up
system

Figure 11.1. Hierarchical task analysis for continuous-process plant.

the analysis when the product of the prob-
ability of failure (p) and the cost of failure
(c) is judged acceptable. In the example
above, if we needed to train a child in making
a cup of tea, we might judge the product of p
and ¢ to be acceptable for the subgoals of
pouring water in the container and looking
for bubbles. However, we may have some
doubts about the subgoal of heating the
water: a child may not know how to oper-
ate the various devices used for boiling water
(probability of failure is high); moreover, the
cost of failure may be high as well (burning
fingers and worse). The analyst will therefore
decide to further decompose this subgoal,
but not the other subgoals. By successively
decomposing goals and applying the p - ¢
criterion at each step, the analyst can dis-

cover possible sources of performance fail-
ure and solutions can be hypothesized.
For instance, one may discover that heat-
ing water with an electrical boiler in fact
requires fairly extensive knowledge about
electricity and the hazards associated with
the combination of water and electricity.
Based on current literature on training, and
in particular training children, the analyst
may finally suggest some ways of educat-
ing children in the dangers of using electrical
boilers when making a cup of tea.

To take a more complex example than
that of making a cup of tea, and illustrat-
ing the output of HTA in a graphical for-
mat, consider part of the HTA in Figure 11.1
for operating a continuous-process chemical
plant (after Shepherd, 2001).



TASK ANALYSIS 191

This example is deliberately simplified in
that it does not show the order in which
subgoals are pursued. A typical HTA would
include a plan that does specify that order.

HTA may best be described as a generic
problem-solving process. It is now one
of the most familiar methods employed
by ergonomics specialists in the United
Kingdom (Annett, 2004). However, evalu-
ation studies have shown that HTA can be
very time intensive compared to other meth-
ods such as observation and interview. HTA
is certainly far from simple and takes both
expertise and practice to administer effec-
tively (Annett, 2003). There is also a good
deal of variability in the application of HTA.
The reader may have had different thoughts
than the writer of this chapter when read-
ing about the particular decomposition of
the subgoal of obtaining boiling water: why
not describe a particular procedure for a
particular way of boiling (e.g., pour water
in pan, put pan on stove, turn on stove,
wait until water boils)? One obvious reply
would be that this description is less gen-
eral than the one offered above because that
description talks about “containers” in gen-
eral. Furthermore, the actions are less precise
(does one need to set the stove to a partic-
ular setpoint?), and the conditions indicat-
ing goal attainment are vague (how does one
see that the water boils?). If there can be
disagreement with such a simple example,
imagine what problems an analyst can run
into when dealing with a complex process-
control task, such as the example above of
the chemical plant.

One of the pitfalls in applying HTA is the
fact that one may lose sight of the problem-
solving nature of the task analysis itself. This
is not a critique of HTA as such, but rather
a cautionary note that analysts need to keep
the purpose of the study in sight throughout
the analysis.

The Age of Information Processing

In the early 1970s, the word “cognitive”
became more acceptable in American aca-
demic psychology, though the basic idea had
been established at least a decade earlier

by George Miller and Jerome Bruner (see
Gardner, 1985; Hoffman & Deffenbacher,
1992; Newell & Simon, 1972 for histori-
cal overviews). Neisser's Cognitive psychol-
ogy had appeared in 1967, and the scien-
tific journal by the same name first appeared
in 1970. It took one more decade for this
approach to receive broader methodolog-
ical justification and its practical applica-
tion. In 1984, Ericsson and Simon (1984)
published Protocol analysis: Verbal reports
as data. This book reintroduced the use
of think-aloud problem-solving tasks, which
had been relegated to the historical dust-
bin by behaviorism even though it had
some decades of successful use in psychol-
ogy laboratories in Germany and elsewhere
in Europe up through about 1925. In 1983,
Card, Moran, and Newell published The psy-
chology of human—computer interaction. This
book helped lay the foundation for the
field of cognitive science and presented the
GOMS model (Goals, Operators, Methods,
and Selection rules), which was a family of
analysis techniques, and a form of task analy-
sis that describes the procedural, how-to-do-
it knowledge involved in a task (see later sec-
tion and Kieras, 2004, for arecent overview).

Task analysis profited a lot from the
developments in artificial intelligence, par-
ticularly in the early 1980s when expert
systems became commercially interesting
(Hayes-Roth, Waterman, & Lenat, 1983).
Since these systems required a great deal
of expert knowledge, acquiring or “elicit-
ing” this knowledge became an important
topic (see Hoffman & Lintern, Chapter 12).
Because of their reliance on unstructured
interviews, system developers soon viewed
“knowledge elicitation” as the bottleneck
in expert-system development, and they
turned to psychology for techniques that
helped elicit that knowledge (Hoffman,
1987). As a result, a host of individual tech-
niques was identified (see Cooke, 1994, for
a review of 70 techniques), but no single
overall method for task analysis that would
guide the practitioner in selecting the right
technique for a given problem resulted from
this effort. However, the interest in the
knowledge structures underlying expertise
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proved to be one of the approaches to
what is now known as cognitive task analysis
(Hoffman & Woods, 2000; see Hoffman &
Lintern, Chapter 12; Schraagen, Chipman, &
Shalin, 2000).

With artificial intelligence coming to be
a widely used term in the 1970s, the first
ideas arose about applying artificial intel-
ligence to cockpit automation. As early
as 1974, the concepts of adaptive aiding
and dynamic function allocation emerged
(Rouse, 1988). Researchers realized that
as machines became more intelligent, they
should be viewed as “equals” to humans.
Instead of Taylor’s “designing the human to
fit the machine,” or the human factors engi-
neering’s “designing the machine to fit the
human,” the maxim now became to design
the joint human-machine system, or, more
aptly phrased, the joint cognitive system
(Hollnagel, 2003). Not only are cognitive
tasks everywhere, but humans have lost their
monopoly on conducting cognitive tasks, as
noted by Hollnagel (2003, p. 6).

Again, as in the past, changes in tech-
nological developments were followed by
changes in task-analysis methods. In order
to address the large role of cognition in
modern work, new tools and techniques
were required “to yield information about
the knowledge, thought processes, and goal
structures that underlie observable task per-
formance” (Chipman, Schraagen, & Shalin,
2000, p. 3)-

Cognitive task analysis is not a single
method or even a family of methods, as
are Hierarchical Task Analysis or the Crit-
ical Incident Technique. Rather, the term
denotes a large number of different tech-
niques that may be grouped by, for instance,
the type of knowledge they elicit (Seamster,
Redding, & Kaempf, 1997) or the process of
elicitation (Cooke, 1994; Hoffman, 1987).
Typical techniques are observations, inter-
views, verbal reports, and conceptual tech-
niques that focus on concepts and their rela-
tions. Apart from the expert-systems thread,
with its emphasis on knowledge elicitation,
cognitive task analysis has also been influ-
enced by the need to understand expert deci-
sion making in naturalistic, or field, settings.

A widely cited technique is the Criti-
cal Decision Method developed by Klein
and colleagues (Klein, Calderwood, &
Macgregor, 1989; see Hoffman, Crandall,
& Shadbolt, 1998, for a review, and see
Hoffman & Lintern, Chapter 12, Ross, et al,
Chapter 23). The Critical Decision Method
is a descendent of the Critical Incident Tech-
nique developed by Flanagan (1954). In the
CDM procedure, domain experts are asked
to recall an incident in detail by construct-
ing a time line, assisted by the analyst. Next,
the analyst asks a set of specific questions
(so-called cognitive probes) about goals, cues,
expectancies, and so forth. The resulting
information may be used for training or sys-
tem design, for instance, by training novices
in recognizing critical perceptual cues.

Despite, and perhaps because of, its rich
and complex history, cognitive task analy-
sis is still a relatively novel enterprise, and
a number of major issues remain to be
resolved. One is the usability of the prod-
ucts of cognitive task analysis, an issue that
applies not only to cognitive task analysis,
but to task analysis in general. Diaper, for
instance, has argued since the beginning of
the 199os that a gulf exists between task
analysis and traditional software-engineering
approaches (Diaper, 2001). When design-
ing systems, software engineers rarely use
the task-analysis techniques advocated by
psychologists. Conversely, as Lesgold (2000,
p. 456) rightfully noted, “psychologists
may have ignored the merits of object-
based formalisms at least as often as ana-
lysts on the software engineering side have
ignored human learning and performance
constraints.” Both groups can learn alot from
each other. Several attempts have been made
to bridge the gulf (Diaper and Stanton’s
2004 handbook lists a number of these),
but none has been widely applied yet, pos-
sibly because of differences in background
and training between software engineers and
cognitive psychologists.

Another major challenge for cognitive
task analysis is to deal with novel systems.
For the most part, the existing practice
of cognitive task analysis is based on the
premise that one has existing jobs with
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experts and existing systems with experi-
enced users to be analyzed. However, new
systems for which there are no experts are
being developed with greater frequency, and
urgency.

These issues have been taken up by the
cognitive systems engineering approach. At its
core, cognitive systems engineering “seeks
to understand how to model work in ways
directly useful for design of interactive sys-
tems” (Eggleston, 2002, p. 15). Eggleston’s
useful overview of the field distinguishes
three phases in the development of cog-
nitive systems engineering: (1) a concep-
tual foundations period that occurred largely
in the 1980s, (2) an engineering prac-
tice period that dominated the 19qos, and
(3) an active deployment period that started
around 2000. Cognitive task analysis fig-
ures prominently in the engineering practice
period of cognitive systems engineering.
However, whereas “traditional” cognitive
task analysis focuses primarily on under-
standing the way people operate in their
current world, cognitive systems engineer-
ing focuses also on understanding the
way the world works and the way in
which new “envisioned worlds” might work
(Potter, Roth, Woods, & Elm, 2000).

With the discussion of cognitive task anal-
ysis and cognitive systems engineering, we
have reached the present-day status of task
analysis. The next section will describe a
number of case studies that exemplify the
use of task analysis methods.

Case Studies

In this section, I will describe various case
studies on task analysis, with the aim, first, to
provide the reader with some ideas on how
to carry out a task analysis, and second, to
note some of the difficulties one encounters
when carrying out a task analysis in complex
domains.

Improving the Training of Troubleshooting

The first case study is in the domain of
troubleshooting. Schaafstal (1993), in her

studies of expert and novice operators in a
paper mill, found evidence for a structured
approach to troubleshooting by experts. She
presented experts and novices with realis-
tic alarms on paper and asked them to think
aloud. Consider the following protocol by
a novice when confronted with the alarm:
“conveyor belt of pulper 1 broke down”:

TLwould . . . I would stop the pulper to start
with and then I would halt the whole cycle
afterwards and then try to repair the con-
veyor belt . . . but you have to halt the whole
installation, because otherwise they don’t
have any stock anymore.

An expert confronted with the same prob-
lem reacted as follows:

OK. Conveyor belt of pulper 1 broke
down . . . conveyor belt of pulper 1. . . if that
one breaks down . ..yeah...see how long
that takes to repair...not postponing the
decision for very long, to ensure we don't
have to halt the installation.

The novice starts repairs that are not nec-
essary at all given the situation, whereas
the expert first judges the seriousness of
the problem. These and similar statements
led to the inclusion of the category “judg-
ing the seriousness of the problem” in the
expert’s task structure of the diagnostic task.
As novices rarely showed this deliberation,
this category did not appear in their task
structure.

The complete task structure is as follows
(see Figure 11.2).

Experts in a paper mill first start by mak-
ing a judgment about the seriousness of the
problem. If the problem is judged to be seri-
ous, the operator will immediately continue
with the application of a global repair, fol-
lowed by an evaluation whether the prob-
lem has been solved. This process may be
followed by a more thorough diagnosis in
order to determine the correct local repair,
ensuring a solution “once and for all.” If the
problem is not a very serious one, the expert
will consider possible faults one by one and
test them, until a likely one is found. This is
then followed by a determination of repairs,
their consequences, an ordering of repairs



194 THE CAMBRIDGE HANDBOOK OF EXPERTISE AND EXPERT PERFORMANCE

symptom

yes

Judgment: serious problem?

A 4 €

-
?l Possible faults |<‘ —————— T
I i
: not
\ 4 !
1
1

Testing: is this the fault?

v

Determination of repairs

\ 4

Consequences of repairs

v

Ordering of repairs

Application of repair (local or [«
global) B

]
1
i |
| I
A\ A / |
Evaluation: problem solved? f----

no

|

]
vY
EXIT

serious problem

------ not very serious
problem

Figure 11.2. Task structure of the diagnostic strategy applied by expert
operators (Schaafstal, 1991)

(if necessary), application of repairs, and an ~ he may realize that he hasnot yet spotted the
evaluation whether the problem has been  actual fault, and therefore the problem has
solved. If the problem has not been solved, = not been solved. In case no possible faults
the expert might do two things: either try  are left, or the operator cannot think of any
another repair, or back up higherin the tree—~  other faults than the ones he already tested,
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he will be inclined to use a global repair to
alleviate the problem.

Inexperienced operators show a far more
simple diagnostic strategy. They don’t judge
the seriousness of the problem, they don’t
consider the consequences of repairs, and
they don’t evaluate whether the problem has
been solved. Also, novices jump much more
quickly to repairs without realizing whether
a certain repair actually is right for a certain
situation.

We applied this expert task structure to
another area of troubleshooting (Schaafstal,
Schraagen, & Van Berlo, 2000). Around
1990, complaints started to emerge from the
Dutch fleet concerning the speed and accu-
racy of weapon engineers, who carry out
both preventive and corrective maintenance
onboard naval vessels. There were a num-
ber of reasons for the suboptimal perfor-
mance of the troubleshooters. First, exper-
tise was not maintained very well. Engineers
shifted positions frequently, left military ser-
vice for more lucrative jobs in the civilian
world, or were less interested in a technical
career in the first place. Second, a new gener-
ation of highly integrated systems was intro-
duced, and this level of integration made
troubleshooting more demanding. Third,
the training the troubleshooters received
seemed inadequate for the demands they
encountered onboard ships.

We conducted a field study with real
faults in real systems that showed that
military technical personnel who had just
completed a course and passed their exam
diagnosed only 40% of the malfunctions cor-
rectly. We also obtained scores on a knowl-
edge test, and found that the junior techni-
cians scored only 55 % correct on this test. Of
even more importance was the low correla-
tion (0.27) between the scores on the knowl-
edge test and the actual troubleshooting per-
formance. This cast doubt on the heavy
emphasis placed on theory in the training
courses.

Our suspicions about the value of theory
in the training courses were further raised
after having conducted a number of obser-
vational studies (see Schraagen & Schaafstal,
1996: Experiment 1). In these studies, we

used both experts and novices (trainees
who had just finished a course) in order
to uncover differences in the knowledge
and strategies employed. Our task-analysis
method was to have technicians think aloud
while troubleshooting two malfunctions in a
radar system. The resulting verbal data were
analyzed by protocol analysis, that is, by iso-
lating and categorizing individual proposi-
tions in the verbal protocol.

The categories we used for classifying the
propositions were derived from the expert
task structure as shown in Figure 11.2. The
radar study showed that a theory instructor
who was one of our participants had dif-
ficulties troubleshooting this radar system.
This turned our attention to a gap between
theoretical instruction and practice. We also
observed virtually no transfer of knowledge
from one radar system to the other, as wit-
nessed by the unsuccessful troubleshoot-
ing attempts of two participants who were
experienced in one radar system but not in
the radar system we studied. This turned
our attention to the content of the train-
ing courses, which were component oriented
instead of functionally oriented. Finally, the
verbal protocols showed the typical unsys-
tematic approach to troubleshooting by the
novice participant in our study.

These studies provided a glimpse of what
was wrong with the courses in troubleshoot-
ing. They were highly theoretical, compo-
nent oriented, with little practice in actual
troubleshooting. On the basis of our obser-
vations and experiments, we decided to
change the courses. Basically, we wanted to
teach the students two things: (1) a sys-
tematic approach to troubleshooting, (2) a
functional understanding of the equipment
they have to maintain. In our previous study
(Schraagen & Schaafstal, 1996), we had
found that the systematic approach to trou-
bleshooting could not be taught indepen-
dently of a particular context. In order to be
able to search selectively in the enormous
problem space of possible causes, it is essen-
tial that the representation of the system be
highly structured.

One candidate for such a structuring
is a functional hierarchical representation,
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much like Rasmussen’s (1986) abstraction
hierarchy (see Hoffman & Lintern, Chap-
ter 12). For a course on a computer system,
we decomposed the system into four levels,
from the top-level decomposition of a com-
puter system into power supply, central pro-
cessor, memory, and peripheral equipment,
down to the level of electrical schemata. We
stopped at the level of individual replace-
able units (e.g., a printed circuit board). In
this way, substantial theoretical background
that was previously taught could be elimi-
nated. We replaced this theory with more
practice in troubleshooting itself. Students
were instructed to use a troubleshooting
form as a job aid. This form consisted sim-
ply of a sheet of paper with four different
steps to be taken in troubleshooting (prob-
lem description, generate causes, test causes,
repair and evaluate). These four steps were a
high-level abstraction of the diagnostic task
structure previously identified in the paper-
mill study by Schaafstal (1993). In this way,
the systematic approach to troubleshooting
was instilled in the practice lessons, while
at the same time a functional understand-
ing of the system was instilled in the the-
ory sessions. Theory and practice sessions
were interspersed such that the new theo-
retical concepts, once mastered, could then
be readily applied to troubleshooting the
real system.

We demonstrated to the Navy the suc-
cess of this approach in a one-week add-
on course: the percentage of problems
solved went up from 40% to 86%. Sub-
sequently, we were asked to completely
modify the computer course according to
our philosophy. Again, we evaluated this
new 